| 研究生: |
溫瑞強 Wen, Jui-Chiang |
|---|---|
| 論文名稱: |
基於向量量化的單張影像除霧 Single image dehazing based on vector quantization |
| 指導教授: |
戴顯權
Tai, Shen-Chuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 除霧 、向量 、編碼簿 、引導濾波 、黑暗通道 、對比度 、特徵 、下採樣 、LBG演算法 |
| 外文關鍵詞: | dehazing, vector quantization, codebook, guided filter, dark channel, contrast, feature, down-sample, LBG algorithm |
| 相關次數: | 點閱:80 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文是基於McCartney的有霧天氣成像模型並提出新的透射率估算方式,且從文獻可以得知,如何找到透射率是除霧的主要問題。本研究利用向量量化的方法將大量的有霧、無霧影像當作我們的資料庫,再以LBG演算法訓練資料庫,最後以匹配的方式找到透射率。速度的部分,以引導濾波結合下採樣的方式提高速度,但卻能保持除霧後的影像品質相差無幾。在訓練編碼簿及預估透射率的時候,我們以RGB色彩、黑暗通道以及對比度來當作配對特徵,利用黑暗通道跟對比特徵的互補性,我們可以準確的找出正確的透射率。
實驗結果顯示,我們可以有效的避免沒有霧氣覆蓋且亮度較高的物體過度去霧,並且保持前景部分的自然度,整體影像更自然,且細節也能清楚地呈現出來。
The proposed method is based on McCartney’s optical haze model and uses a novel approach to estimate transmission. According to the literature, the major problem is estimating the transmission in the model-based method. This study trains plenty of haze-free and hazy images as codebooks with LBG algorithm. Then it is used to estimate transmission with matching. In order to speed up the process, the input image is down-sampled before refining with guided image filter. It not only can reduce processing time but also can preserve the quality of restored images. RGB, dark channel, and contrast values are regarded as features while training codebooks and estimating transmission. The transmission can be selected accurately because dark channel and contrast feature have complementarity.
The experiment results show that the haze-free high-intensity objects can avoid over dehazing and keep the foreground of restored images more natural. The details of recovered images are also clearer.
[1] D. J. Jobson, Z. Rahman, and G. A. Woodell, “Properties and performance of a center/surround retinex,” IEEE Trans. Image Process., vol. 6, no. 3, pp. 451-462, Mar. 1997.
[2] D. J. Jobson, Z. Rahman, and G. A. Woodell, “A multiscale Retinex for bridging the gap between color images and the human observation of scenes,” IEEE Trans. Image Process., vol. 6, no. 7, pp. 965-976, Jul. 1997.
[3] T. K. Kim, J.K. Paik, B. S. Kang, “Contrast enhancement system using spatially adaptive histogram equalization with temporal filtering,” IEEE Trans. Consum. Electron., vol. 44, no. 1, pp.82-86, Feb. 1998.
[4] J.A. Stark, W.J. Fitzgeralid, “An Alternative Algorithm for Adaptive Histogram Equalization Graphical Models and Image Processing,” Graphical Models and Image Processing, vol. 58, no. 2, pp. 180–185, Mar. 1996.
[5] J.A. Stark, “Adaptive image contrast enhancement using generalizations of histogram equalization,” IEEE Trans. Image Process., vol. 9, no. 5, pp. 889-896, May 2000.
[6] J.P. Oakly, B. L. Satherley, “Improving image quality in poor visibility conditions using model for degradation,” IEEE Trans. Image Process., vol. 7, no. 2, pp. 167-179, Feb. 1998.
[7] S.G. Narasimhan, S.K. Nayar, “Chromatic Framework for Vision in Bad Weather,” Proc. IEEE Conf. Computer Vision and Pattern Recognition, vol. 1, June 2000, pp. 598-605.
[8] S.G. Narasimhan and S.K. Nayar, “Vision and the Atmosphere,” Int’l J. Computer Vision, vol. 48, pp. 233-254, 2002.
[9] J. Kopf, B. Neubert, B. Chen, M. Cohen, D. Cohen-Or, O. Deussen, M. Uyttendaele, and D. Lischinski, “Deep Photo: Model-Based Photograph Enhancement and Viewing,” ACM Trans. Graphics, vol. 27, no. 5, pp. 116:1-116:10, 2008.
[10] R. Tan, “Visibility in Bad Weather from A Single Image,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition., Anchorage, Alaska, Jun. 2008, pp. 1-8.
[11] R. Fattal, “Single Image Dehazing,” in ACM SIGGRAPH ’08, Los Angeles, CA, Aug. 2008, pp. 1-9.
[12] K. He, J. Sun, and X. Tang, “Single Image Haze Removal Using Dark Channel Prior,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition. Miami, FL, Jun. 2009, pp. 1956-1963.
[13] J.-P. Tarel and N. Hautiere, “Fast visibility restoration from a single color or gray level image,” in Proc. IEEE 12th Int. Conf. Comput. Vis., Sep.-Oct. 2009, pp. 2201-2208.
[14] Y. Linde, A. Buzo, and R. Gray, “An algorithm for vector quantizer design,” IEEE Trans. Commun. 28(1), 84–95 (1980).
[15] Y. Wang, C. Fan, “Single Image Dehazing by Multi-Scale Fusion,” IEEE Trans. Image Processing, vol. 23, no. 11, pp. 4826-4837, Nov. 2014.
[16] H. Koschmieder, “Theorie der Horizontalen Sichtweite,” Beitr. Phys. Freien Atm., vol. 12, pp. 171-181, 1924.
[17] W. Middelton, Vision through the atmosphere, University of Toronto Press, 1952.
[18] E.J. McCartney, Optics of the Atmosphere: Scattering by Molecules and Particles, John Wiley and Sons: New York, 1975.
[19] Y. Linde, A. Buzo, and R. Gray, “An algorithm for vector quantizer design,” IEEE Trans. Commun. 28(1), 84–95 (1980).
[20] B. Gibson, J. Belongie, and Q. Nguyen, “EXAMPLE BASED DEPTH FROM FOG,” IEEE Image Processing, Sept. 2013.
[21] K. He, J. Sun, and X. Tang, “Guided image filtering,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 35, no. 6, pp. 1397-1409, Jun. 2013.
[22] J. -P Tarel, N. Hautiere, L. Caraffa, A. Cord, H. Halmaoui, D. Gruyer, "Vision Enhancement in Homogeneous and Heterogeneous Fog", IEEE Intelligent Transportation Systems Magazine, vol. 4, no. 2, pp. 6-20, 2012.
[23] N. Hautiere, J.-P. Tarel, D. Aubert, and E. Dumont, “Blind contrast enhancement assessment by gradient ratioing at visible edges,” J. Image Anal. Stereol., vol. 27, no. 2, pp. 87–95, 2008.
[24] Ketan Tang ; Jianchao Yang ; Jue Wang, “Investigating Haze-Relevant Features in a Learning Framework for Image,” Computer Vision and Pattern Recognition 2014 IEEE Conference, June. 2014.
校內:2020-08-10公開