| 研究生: |
黃婉筠 Huang, Wan-Yun |
|---|---|
| 論文名稱: |
虛擬實境應用於社區老年人的健康促進 The application of virtual reality for promoting health in community older adults |
| 指導教授: |
成戎珠
Cherng, Rong-Ju |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 健康照護科學研究所 Institute of Allied Health Sciences |
| 論文出版年: | 2026 |
| 畢業學年度: | 114 |
| 語文別: | 英文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 虛擬實境 、骨架追蹤 、體適能 、生活品質 、社區老年人 |
| 外文關鍵詞: | virtual reality, skeleton display, fitness , quality of life, community older adults |
| 相關次數: | 點閱:32 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣人口結構正經歷顯著高齡化轉型,老年人口65歲以上占比接近總人口20%門檻,將造成超高齡社會型態。此現象伴隨「健康餘命」與「失能存活期」的雙重延展效應,個體從亞健康狀態、衰弱症前期(Pre-frailty)、臨床衰弱期(Frailty)至生命終末期的病程軌跡顯著拉長。當長者進入功能衰退階段時,將面臨多重層面的惡性循環:下降的基礎代謝率導致肌少症風險、社交退縮加速認知功能退化、慢性病共病性更形複雜,最終形成失能失智的複合性健康危機。此連鎖效應不僅衝擊醫療照護體系,更衍生龐大社會成本,故建構有效預防性介入模式,已成為當今公共衛生的領域亟待突破的核心課題。
在衛生福利部的「高齡友善城市計畫」政策框架下,全台已布建逾3,000處社區關懷據點,系統性推動包含體適能課程、認知訓練模組及社會參與方案等多元介入措施。然實務執行面臨雙重困境:其一,COVID-19疫情後遺症導致實體課程參衰退,數位轉型需求迫切;其二,專業人力受地理限制,偏鄉地區獲得的服務密度遠不如都會區,形成健康不平等結構。為突破現有框架,本論文研究創新設計一套以骨架追蹤技術的基礎並結合自行設計之舞蹈式健康促進運動的之虛擬實境(VR)健康促進系統,探討其應用於社區長者健康促進的效益與可行性。
本研究採兩階段驗證模式:第一階段是針對社區居住長者,設計並建置一套以骨架追蹤技術的基礎之虛擬實境運動系統,以評估其可行性與信度。該系統整合微軟開發之 Kinect 體感裝置與腕戴式脈搏血氧儀,運動內容包含有氧運動、肌力運動及伸展運動三大類型。研究以20位社區長者為對象,檢驗系統的同時效度、再測信度與可行性。結果顯示,各類型運動的再測信度無論是在有即時骨架追蹤與否系統都可達中等至良好水準(ICC= 0.749–0.968),運動強度分級與心律的同時效度顯示 (0.859-0.945)。就問卷結果而言,有即時骨架追蹤組在自主練習意願、即時運動動機與安全感知方面表現均優於無骨架(p< 0.05),且未來參與意願亦顯著比較高(80% vs. 60%,p = 0.001)。
第二階段採隨機對照試驗設計,共招募 64 位社區老年人參與,隨機分為對照組與實驗組。實驗組採用骨架追蹤虛擬實境運動的系統進行訓練,對照組則是進行傳統有氧運動影片訓練,訓練每週三次,為期八週,之後於第12周追蹤。結果顯示,兩組參與者在第 0–8 週及第 0–12 週期間之椅子站立測驗與六分鐘步行測驗表現均有顯著提升,惟實驗組於椅子站立測驗(0–8 週)及六分鐘步行測驗(0–12 週)的改善幅度顯著優於對照組。同時,實驗組在世界衛生組織生活品質問卷(WHOQOL-BREF)之 0–8 週與 0–12 週評量中,亦顯示出顯著進步。
本論文研究完成了一套以骨架追蹤技術的基礎並結合自行設計之舞蹈式健康促進運動的之虛擬實境(VR)健康促進系統,並驗證其具有良好的可行性與介入效益。此系統不僅能有效提升社區衰弱前期長者的運動強度與參與度,亦能增進其運動動機與生活品質。與傳統運動模式相比,結合 Kinect 系統之骨架追蹤有氧舞蹈訓練更能促進社區衰弱前期長者之身心健康,達到延緩衰弱、促進成功老化與健康老化之目標。
Taiwan's population structure is undergoing a significant aging transition, with the proportion of people aged 65 and above approaching 20% of the total population, leading to a super-aged society. To shorten the prefrailty interval and develop effective preventive intervention models has become a core issue in contemporary public health. The purposes of this dissertation were to develop an innovative virtual reality (VR) health promotion system which is based on skeleton tracking technology and combined with self-designed dance-based health promotion exercises and to explore its feasibility and effectiveness in promoting health among the community-dwelling older adults.
This study was conducted in two phases. In the Phase I, a VR exercise system based on skeletal tracking technology was designed and implemented for community-dwelling elderly individuals. The system integrated a Microsoft Kinect sensor and a wrist-worn pulse oximeter, providing three types of exercise: stretching, strengthening, and aerobics. Twenty older adults were recruited to assess the system’s reliability and feasibility. The results showed the test-retest reliability across all exercise models were moderate to good level (0.749–0.968) in both Display Skeletal group and No Display Skeketal group, indicating the consistency of the system. The concurrent validity for exercise intensity grading and heart rate was (0.859–0.945). Regarding the questionnaire results, the Display Skeleton group performed better than the No Display Skeleton group in terms of willingness to practice independently, immediate motivation for movement, and safety perception (p < 0.05), and also had a significantly higher willingness to participate in the future (80% vs. 60%, p = 0.001). In Phase II, a randomized controlled trial was conducted with 64 older adults assigned to either an experimental group (Display Skeleton group) or a control group (No Display Skeleton group). The intervention was 3 session/wk, for 8 weeks. Both groups improved in the chair stand test and six-minute walk test (6MWT) at 0–8 and 0–12 weeks. However, the Display Skeleton group achieved significantly greater gains in chair stand performance at 0–8 weeks and in 6MWT distance at 0–12 weeks. Additionally, participants in the experimental group reported significant improvements in all domains of the WHOQOL-BREF at both time points.
This dissertation has developed a VR health promotion system based on skeleton tracking technology and integrated with a self-designed dance-based health-promoting exercise program, demonstrating its feasibility and effectiveness. Compared with traditional exercise programs, aerobic dance training using a VR health promotion system based on the Kinect system demonstrated greater benefits in exercise intensity, motivation, physical function, and quality of life, providing a promising strategy to promote health and successful aging in community-dwelling older adults.
American College of Sports Medicine. (2021). ACSM’s guidelines for exercise testing and prescription (11th ed.). Philadelphia, PA: Wolters Kluwer.
America Alliance for Health, Physical Education, Recreation and Dance. (1980). Health related physical fitness test manual. Reston, VA: Author.
Appel, L., Ali, S., Narag, T., Mozeson, K., Pasat, Z., Orchanian-Cheff, A., & Torabi, N. (2020). Virtual reality to promote wellbeing in older adults: A systematic review. Journal of Rehabilitation and Assistive Technologies Engineering, 7, 1–13. https://doi.org/10.1177/2055668320951996
Arlati, S., Colombo, V., Spoladore, D., Greci, L., Pedroli, E., Serino, S., Cipresso, P., Goulene, K., Stramba-Badiale, M., & Riva, G. (2019). A social virtual reality-based application for the physical and cognitive training of the elderly at home. Sensors, 19(2), Article 261. https://doi.org/10.3390/s19020261
Bergen, G., Stevens, M. R., & Burns, E. R. (2016). Falls and fall injuries among adults aged ≥65 years — United States, 2014. MMWR Morbidity and Mortality Weekly Report, 65, 993–998. https://doi.org/10.15585/mmwr.mm6537a2
Burdea, G. C., & Coiffet, P. (2003). Virtual reality technology (2nd ed.). Hoboken, NJ: John Wiley & Sons.
Campo-Prieto, P., Cancela Carral, J. M., & Rodríguez-Fuentes, G. (2021). Immersive virtual reality as physical therapy in older adults: present or future (systematic review). Virtual Reality, 25(3), 801–817. https://doi.org/10.1007/s10055-020-00495-x
Centers for Disease Control and Prevention. (2020). Important facts about falls. U.S. Department of Health and Human Services. https://www.cdc.gov/falls/facts.html
Chen, L. J., Fox, K. R., Ku, P. W., & Taunton, J. E. (2019). Effects of aerobic exercise on muscular strength and endurance in older adults: A systematic review. Journal of Aging and Physical Activity, 27(1), 1–12. https://doi.org/10.1123/japa.2018-0123
Chen, W. L., Hsu, W. C., & Wang, C. Y. (2020). Effects of community-based aerobic dance exercise on physical fitness and quality of life among older adults in Taiwan. Geriatrics & Gerontology International, 20(7), 620–627. https://doi.org/10.1111/ggi.13949
Chen, Y. C., Lin, C. H., Huang, Y. T., & Chang, Y. K. (2024). Effects of a virtual reality–based exercise program on physical function and body composition in community-dwelling older adults: A randomized controlled trial. Journal of Aging and Physical Activity, 32(2), 245–254. https://doi.org/10.1123/japa.2023-0187
Chitjamnogchai, K., Saengsuwan, J., & Amatachaya, S. (2025). Effects of virtual reality–based exergaming on functional performance, psychosocial outcomes, and body composition in older adults. Geriatrics & Gerontology International, 25(1), 62–71. https://doi.org/10.1111/ggi.14732
Chodzko-Zajko, W. J., Proctor, D. N., Fiatarone Singh, M. A., Minson, C. T., Nigg, C. R., Salem, G. J., & Skinner, J. S. (2009). Exercise and physical activity for older adults. Medicine & Science in Sports & Exercise, 41(7), 1510–1530. https://doi.org/10.1249/MSS.0b013e3181a0c95c
Chuang, H.-C., Huang, S.-C., Chang, Y.-J., Hsieh, P.-C., & Chiu, Y.-W. (2024). Cognitive function in community-dwelling older people in central Taiwan. Tungs’ Medical Journal, 18(2), 102. https://doi.org/10.4103/ETMJ.ETMJ-D-24-00023
Clegg, A., Young, J., Iliffe, S., Rikkert, M. O., & Rockwood, K. (2013). Frailty in elderly people. The Lancet, 381(9868), 752–762. https://doi.org/10.1016/S0140-6736(12)62167-9
Collard, R. M., Boter, H., Schoevers, R. A., & Oude Voshaar, R. C. (2012). Prevalence of frailty in community-dwelling older persons: A systematic review. Journal of the American Geriatrics Society, 60(8), 1487–1492. https://doi.org/10.1111/j.1532-5415.2012.04054.x
Crocker, T., Young, J., Forster, A., Brown, L., Ozer, S., Smith, J., & Greenwood, D. C. (2013). Physical rehabilitation for older people in long-term care. Cochrane Database of Systematic Reviews, 2013(2), CD004294. https://doi.org/10.1002/14651858.CD004294.pub3
De Bruin, E. D., Reeves, N. D., Loram, I. D., Cooper, G., Stuart, S., & Giuliani, C. A. (2010). Virtual reality exercise environments in older adults: Movement behavior, balance control, and motor learning considerations. Gerontology, 56(3), 266–273. https://doi.org/10.1159/000236900
De Luca, V., Rossi, F., & Bianchi, M. (2025). Community-based VR exercise programs for older adults: Feasibility and outcomes. European Review of Aging and Physical Activity, 20(2), 59–68. https://doi.org/10.1186/s11556-025-00304-1
Dockx, K., Bekkers, E. M. J., Van den Bergh, V., Ginis, P., Rochester, L., Hausdorff, J. M., Mirelman, A., & Nieuwboer, A. (2016). Virtual reality for rehabilitation in Parkinson’s disease. Cochrane Database of Systematic Reviews, 12, CD010760. https://doi.org/10.1002/14651858.CD010760.pub2
Duque, G., Boersma, D., Loza-Diaz, G., Hassan, S., Suarez, H., Geisinger, D., Suriyaarachchi, P., Sharma, A., Demontiero, O., & Baranzini, F. (2013). Effects of balance training using a virtual-reality system in older fallers. Clinical Interventions in Aging, 8, 257–263. https://doi.org/10.2147/CIA.S41453
Duray, B., & Genç, E. (2017). Demographic ageing and the elderly population in Turkey. Journal of International Social Research, 10(48), 378–386.
Ensrud, K. E., Ewing, S. K., Taylor, B. C., Fink, H. A., Stone, K. L., Cauley, J. A., Tracy, J. K., & Cummings, S. R. (2008). Comparison of two frailty indexes for the prediction of falls, disability, fractures, and death in older women.
Archives of Internal Medicine, 168(4), 382–389.
https://doi.org/10.1001/archinternmed.2007.113
Esther, G., Saito, Y., & Crimmins, E. M. (2016). Global trends in population aging. In L. K. George & K. F. Ferraro (Eds.), Handbook of aging and the social sciences (8th ed., pp. 11–30). Academic Press.
Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G∗Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149 –1160. https://doi.org/10.3758/BRM.41.4.1149
Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198. https://doi.org/10.1016/0022-3956(75)90026-6
Forsberg, A., Nilsagård, Y., Boström, K., & Becker, M. (2011). Balance exercise using Wii Fit and the influence on balance in healthy older adults: A pilot study. Advances in Physiotherapy, 13(1), 21–27.
Fried, L. P., Tangen, C. M., Walston, J., Newman, A. B., Hirsch, C., Gottdiener, J., Seeman, T., Tracy, R., Kop, W. J., Burke, G., & McBurnie, M. A. (2001). Frailty in older adults: Evidence for a phenotype. The Journals of Gerontology: Series A, 56(3), M146–M156. https://doi.org/10.1093/gerona/56.3.M146 https://doi.org/10.3109/14038196.2010.539529
Groot, C., Hooghiemstra, A. M., Raijmakers, P. G. H. M., van Berckel, B. N. M., Scheltens, P., Scherder, E. J. A., van der Flier, W. M., & Ossenkoppele, R. (2016). The effect of physical activity on cognitive function in patients with dementia: A meta-analysis of randomized control trials. Ageing Research Reviews, 25, 13–23. https://doi.org/10.1016/j.arr.2015.11.005
Hajder, Đ., Rosiak, O., Kaczmarczyk, K., & Rutkowski, J. (2025). Effects of virtual reality–based training with skeletal motion visualization on motor performance and exercise motivation. Sensors, 25(3), 1123. https://doi.org/10.3390/s25031123
America Alliance for Health, Physical Education, Recreation and Dance. (1980). Health related physical fitness test manual. Reston, VA: Author.
Heizenrader, T. (2022, December 1). The 3 types of virtual reality: Non-immersive, semi-immersive & fully-immersive simulations. Heizenrader. https://heizenrader.com/the-3-types-of-virtual-reality/
HPA, Ministry of Health and Welfare. (2020, June 20). WHO’s updated Integrated Care for Older People (ICOPE) (Taiwan page summarizing the 2019 frailty screening results). Health Promotion Administration website. https://www.hpa.gov.tw/EngPages/Detail.aspx?nodeid=1076&pid=17750
Hoffmann, M., Chadderdon, G., Sanguineti, V., & Sweet, J. A. (2014). Virtual environments for motor rehabilitation: Safety, presence, and engagement during exercise training. Journal of NeuroEngineering and Rehabilitation, 11, 120. https://doi.org/10.1186/1743-0003-11-120
Htut, T., Aung, K., & Win, S. (2018). Comparison of virtual reality and traditional exercise on balance and lower limb strength in older adults. Journal of Rehabilitation Medicine, 10(4), 201–215. https://doi.org/10.2340/16501977-2311
Huang, W.-Y., Chang, S.-T., Lee, C.-H., Liou, I.-H., & Cherng, R.-J. (2024). Effects of virtual reality on the balance performance of older adults: A systematic review and meta-analysis. Journal of Physical Therapy Science, 36(8), 457–470. https://doi.org/10.1589/jpts.36.457
Hoffmann, M., Chadderdon, G., Sanguineti, V., & Sweet, J. A. (2014). Virtual environments for motor rehabilitation: Safety, presence, and engagement during exercise training. Journal of NeuroEngineering and Rehabilitation, 11, 120. https://doi.org/10.1186/1743-0003-11-120
Kalawsky, R. S. (1993). The science of virtual reality and virtual environments. Wokingham, England: Addison-Wesley.
Kim, O., Pang, Y., & Kim, J. H. (2021). The effectiveness of virtual reality exercise on physical function and balance of older adults: A systematic review and meta-analysis. Journal of Geriatric Physical Therapy, 44(4), 190–199. https://doi.org/10.1519/JPT.0000000000000293
Kuhlen, T., & Dohle, C. (1995). Virtual reality as a rehabilitation tool. In Proceedings of the 4th European Conference on Virtual Reality (pp. 157–164).
Lan, C. (2010). Health promotion and physical activity in older adults. Formosan Journal of Physical Therapy, 35(2), 85–92.
Lan, C., Chen, S. Y., Lai, J. S., & Wong, A. M. K. (2013). Tai Chi Chuan in medicine and health promotion. Evidence-Based Complementary and Alternative Medicine, 2013, 502131. https://doi.org/10.1155/2013/502131
Laver, K. E., Lange, B., George, S., Deutsch, J. E., Saposnik, G., & Crotty, M. (2017). Virtual reality for stroke rehabilitation. Cochrane Database of Systematic Reviews, 11, CD008349. https://doi.org/10.1002/14651858.CD008349.pub4
Laver, K. E., Lange, B., George, S., Deutsch, J. E., Saposnik, G., & Crotty, M. (2020). Virtual reality for stroke rehabilitation. Cochrane Database of Systematic Reviews, 2020(11), CD008349. https://doi.org/10.1002/14651858.CD008349.pub4
Lawton, M. P. (1991). A multidimensional view of quality of life in frail elders. In J. E. Birren, J. E. Lubben, J. C. Rowe, & D. E. Deutchman (Eds.), The concept and measurement of quality of life in the frail elderly (pp. 3–27). Academic Press.
Liang, H.-W., Chen, Y.-L., Chen, S.-C., Chen, Y.-C., & Huang, C.-H. (2016). Reliability and validity of a Kinect-based system for balance assessment in community-dwelling older adults. Sensors, 16(12), 2110. https://doi.org/10.3390/s16122110
Li, B., Zhang, Z., & Zhao, X. (2019). Human motion capture and recognition using inertial sensors. Sensors, 19(5), 1220. https://doi.org/10.3390/s19051220
Li, L., Wang, C. K. J., Pyun, D. Y., & Kee, Y. H. (2013). Validation of the Chinese version of the Behavioral Regulation in Exercise Questionnaire–2. International Journal of Sport and Exercise Psychology, 11(1), 79–91. https://doi.org/10.1080/1612197X.2012.717444
Li, Y., Chen, X., Wang, L., Zhang, J., & Huang, P. (2024). Effects of virtual reality–based activities of daily living rehabilitation training on older adults with cognitive impairment. Journal of the American Medical Directors Association, 25(1), 19–27. https://doi.org/10.1016/j.jamda.2023.00819
Lin, C. H., Chen, C. C., & Hsu, H. C. (2022). Effects of virtual reality exercise on physical function, cognition, and quality of life in community-dwelling older adults in Taiwan. Journal of Aging and Physical Activity, 30(5), 845–856. https://doi.org/10.1123/japa.2021-0231
Lin, H., Zhang, T., Ge, M., Sun, P., Wang, Z., & Li, X. (2022). Frailty’s prevalence and the association with aging among community-dwelling older adults in Lianyungang City, China. Frontiers in Public Health, 10, Article 943557. https://doi.org/10.3389/fpubh.2022.943557
Makransky, G., Petersen, G. B., & Immersive Learning Research Network. (2019). Immersive virtual reality and learning: A meta-analysis. Educational Psychology Review, 31(4), 987–1010. https://doi.org/10.1007/s10648-019-09468-7
Maillot, P., Perrot, A., & Hartley, A. (2012). Effects of interactive physical-activity video-game training on physical and cognitive function in older adults. Psychology and Aging, 27(3), 589–600. https://doi.org/10.1037/a0026268
Markland, D., & Tobin, V. (2004). A modification to the Behavioural Regulation in Exercise Questionnaire to include an assessment of amotivation. Journal of Sport and Exercise Psychology, 26(2), 191–196. https://doi.org/10.1123/jsep.26.2.191
McGavin, C. R., Gupta, S. P., & McHardy, G. J. R. (1976).Twelve-minute walking test for assessing disability in chronic bronchitis.British Medical Journal, 1(6013), 822–823.https://doi.org/10.1136/bmj.1.6013.822
Ministry of Health, Labour and Welfare. (2017). Comprehensive strategy for the prevention of long-term care needs and dementia. Ministry of Health, Labour and Welfare, Japan. https://www.mhlw.go.jp/english/
Ministry of Health and Welfare. (2017). Taiwan long-term care plan 2.0. Taipei, Taiwan: Ministry of Health and Welfare. Retrieved from https://www.mohw.gov.tw
Ministry of Health and Welfare. (2020). Welfare law for the elderly. Laws & Regulations Database of the Republic of China (Taiwan).
Ministry of Health and Welfare. (2021). National dementia prevention and care policy in Taiwan (2021–2025). Taipei, Taiwan: Ministry of Health and Welfare. Retrieved from https://www.mohw.gov.tw
Ministry of Health and Welfare. (2024). National community dementia prevalence survey results: Dementia prevalence among Taiwan’s older adults (65 years and over). https://www.mohw.gov.tw/cp-6653-78102-1.html
Mirelman, A., Rochester, L., Maidan, I., Del Din, S., Alcock, L., Nieuwhof, F., Rikkert, M. O., Bloem, B. R., Pelosin, E., Avanzino, L., Abbruzzese, G., Dockx, K., Nieuwboer, A., & Hausdorff, J. M. (2016). Addition of a non-immersive virtual reality component to treadmill training to reduce fall risk in older adults (V-TIME): A randomized controlled trial. The Lancet, 388(10050), 1170–1182. https://doi.org/10.1016/S0140-6736(16)31325-3
Molina, K. I., Ricci, N. A., de Moraes, S. A., & Perracini, M. R. (2014). Virtual reality using games for improving physical functioning in older adults: A systematic review. Journal of NeuroEngineering and Rehabilitation, 11, 156. https://doi.org/10.1186/1743-0003-11-156
Naiwen, Y., Zhang, M. Y., Katzman, R., Ouang, Y. Q., Wang, Z. Y., Liu, W. T., Yu, E., Wong, S. C., & Qu, G. Y. (1989). A Chinese version of the Mini-Mental State Examination: Impact of illiteracy in a Shanghai dementia survey. Journal of Clinical Epidemiology, 42(10), 971–978.
Panerai, S., Catania, V., Rundo, F., Tasca, D., Musso, S., Babiloni, C., ... & Ferri, R. (2023). Functional living skills in patients with major neurocognitive disorder due to degenerative or non-degenerative conditions: effectiveness of a non-immersive virtual reality training. Sensors, 23(4), 1896.
Parmak, D., Angın, E., & Iyigün, G. (2025a). Effects of immersive virtual reality on physical function, fall-related outcomes, fatigue, and quality of life in older adults: A randomized controlled trial. Healthcare, 13(15), Article 1800. https://doi.org/10.3390/healthcare13151800
Parmak, M., Yıldız, S., & Demirci, N. (2025b). Effects of virtual reality–based exercise training on gait, balance, and functional mobility in older adults: A randomized controlled study. Geriatrics & Gerontology International, 25(2), 143–152. https://doi.org/10.1111/ggi.14758
Pender, Nola J., Walker, S. N., Sechrist, K. R., & Stromborg, M. F. (1982). Health promotion model: Instruments to measure health promoting lifestyle. University of Michigan.
Pender, N. J., Murdaugh, C. L., & Parsons, M. A. (2011). Health promotion in nursing practice (6th ed.). Upper Saddle River, NJ: Pearson Education.
Peng, R., An, H., & Jiang, Y. (2023). A review of gesture interaction technology based on virtual reality. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4359350
Polechoński, J., Mynarski, W., & Rozpara, M. (2024). Intensity and attractiveness of a virtual reality table tennis game (Racket Fury). Journal of Sports Sciences, 42(2), 189–198. https://doi.org/10.1080/02640414.2023.2274185
Population Reference Bureau. (2020). World population data sheet. Population Reference Bureau.
Reeve, J., Jang, H., Carrell, D., Jeon, S., & Barch, J. (2004). Enhancing students’ engagement by increasing teachers’ autonomy support. Motivation and Emotion, 28(2), 147–169. https://doi.org/10.1023/B:MOEM.0000032312.95499.6f
Rendon, A. A., Lohman, E. B., Thorpe, D., Johnson, E. G., Medina, E., & Reynolds, S. (2012). The effect of virtual reality gaming on dynamic balance in older adults. Age and Ageing, 41(4), 549–552. https://doi.org/10.1093/ageing/afs053
Rockwood, K., & Mitnitski, A. (2011). Frailty defined by deficit accumulation and geriatric medicine defined by frailty. Clinical Geriatrics Medicine, 27(1), 17–26. https://doi.org/10.1016/j.cger.2010.08.008
Rodrigues, L. P., Monteiro, D., Teixeira, E., Cid, L., & Bento, T. (2022). Physical activity and frailty in older adults: A systematic review. Journal of Aging and Physical Activity, 30(2), 294–308. https://doi.org/10.1123/japa.2020-0412
Rosenberg, L., Kelly, A., & Baker, C. (2010). Physical and psychosocial effects of Wii Fit exergames use in assisted living residents: A pilot study. Activities, Adaptation & Aging, 34(4), 314–327. https://doi.org/10.1080/01924788.2010.528775
Rosiak, O., Kaczmarczyk, K., Wnuk, M., & Rutkowski, J. (2023).
Reliability and validity of skeleton-based motion analysis using RGB-D cameras for physical performance assessment: A systematic review.
Sensors, 23(4), 1987.https://doi.org/10.3390/s23041987
Rosiak, O., Wilk, M., Kostrzewa-Nowak, D., & Zajac, A. (2024). The impact of exergaming-based virtual reality training on functional fitness and cardiorespiratory performance in older adults: A randomized controlled trial. Frontiers in Physiology, 15, 1391182. https://doi.org/10.3389/fphys.2024.1391182
Rowe, J. W., & Kahn, R. L. (1997). Successful aging. The Gerontologist, 37(4), 433–440. https://doi.org/10.1093/geront/37.4.433
Sabela, P., Cikajlo, I., & Rudolf, M. (2020). The effect of virtual reality and video games on gait and balance in elderly women. Sensors, 20(24), 7193. https://doi.org/10.3390/s20247193
Saposnik, G., & Levy, P. (2021). Virtual reality in neurological rehabilitation: Rationale, advances and limitations. Current Opinion in Neurology, 34(6), 759–768. https://doi.org/10.1097/WCO.0000000000000991
Shen, S., Chen, Y., Huang, C., & Lin, C. (2020). Effects of aerobic dance exercise on physical fitness and muscular endurance in community-dwelling older adults. Journal of Aging and Physical Activity, 28(4), 567–575. https://doi.org/10.1123/japa.2019-0214
Slater, M., & Sanchez-Vives, M. V. (2016). Enhancing our lives with immersive virtual reality. Frontiers in Robotics and AI, 3, 74. https://doi.org/10.3389/frobt.2016.00074
Song, X., Li, H., Zhang, Y., & Zhao, J. (2025). Dual-task virtual reality training improves motivation and treatment adherence among frail older adults: Evidence from a randomized controlled trial. International Journal of Environmental Research and Public Health, 22(1), 112. https://doi.org/10.3390/ijerph22010112
Sports Affairs Council, Executive Yuan. (2001). White paper on sports policy. Executive Yuan. https://www.ey.gov.tw/
Steeves, J. A., Bowles, H. R., McClain, J. J., Dodd, K. W., & Brychta, R. J. (2023). Energy expenditure and exercise intensity of virtual reality active games. Journal of Sports Sciences, 41(3), 312–320. https://doi.org/10.1080/02640414.2022.2163569
Sun, Y., Lee, H.-J., Yang, S.-C., Chen, T.-F., Lin, K.-N., Lin, C.-C., Wang, P.-N., Tang, L.-Y., & Chiu, M.-J. (2014). A nationwide survey of mild cognitive impairment and dementia, including very mild dementia, in Taiwan. PLoS ONE, 9(6), e100303. https://doi.org/10.1371/journal.pone.0100303
Taiwan Dementia Association. (2021). Dementia statistics in Taiwan. Taiwan Dementia Association. https://www.tada2002.org.tw/
Theobald, P., Jones, M. D., Williams, J., & Jones, R. K. (2022). Reliability of remote, video-based physical function assessment in adults: A test–retest study. Sensors, 22(9), 3398. https://doi.org/10.3390/s22093398
Turner, J. S., & Helms, D. B. (1986). Lifespan development (3rd ed.). Holt, Rinehart and Winston.
Villareal, D. T., Aguirre, L., Gurney, A. B., Waters, D. L., Sinacore, D. R., Colombo, E., Armamento-Villareal, R., & Qualls, C. (2017). Aerobic or resistance exercise, or both, in dieting obese older adults. The New England Journal of Medicine, 376(20), 1943–1955. https://doi.org/10.1056/NEJMoa1616338
Wang, L.-T., Li, Y., & Chen, Z. (2023). Effects of virtual reality exercise on functional fitness in older adults. Journal of Geriatric Physical Therapy, 12(3), 45–58. https://doi.org/10.1177/21582440231218515
Wang, L. T., & Wang, Y. W. (2025). Effects of a 12-week semi-immersive virtual reality-based exercise program on the quality of life of older adults across different age groups: A randomized controlled trial. Applied Sciences, 15(2), 902. https://doi.org/10.3390/app15020902
WHOQOL-Taiwan Group. (2005). The User’s Manual of the Development of the WHOQOL-BREF Taiwan Version. Taipei, Taiwan: WHOQOL-Taiwan.
World Health Organization Quality of Life Group. (1998). Development of the World Health Organization WHOQOL-BREF quality of life assessment. Psychological Medicine, 28(3), 551–558. https://doi.org/10.1017/S0033291798006667
World Health Organization. (2002). Active ageing: A policy framework (No. WHO/NMH/NPH/02.8). Geneva, Switzerland: World Health Organization.
World Health Organization. (2015). World report on ageing and health. World Health Organization. https://www.who.int/publications/i/item/9789241565042
World Health Organization. (2019). Risk reduction of cognitive decline and dementia: WHO guidelines. World Health Organization. https://www.who.int/publications/i/item/9789241550543
Wu, S. Y., Chang, Y. K., Hung, T. M., & Tsai, C. L. (2021). Effects of rhythmic exercise combined with music on muscular endurance and functional performance in older adults. Experimental Gerontology, 145, 111188. https://doi.org/10.1016/j.exger.2020.111188
Żak, M., Krzyżanowski, A., Krzysztofik, M., Czernicki, K., & Ambroży, T. (2022). The use of modern virtual reality technologies in rehabilitation of patients with frailty syndrome. International Journal of Environmental Research and Public Health, 19(19), 12660. https://doi.org/10.3390/ijerph191912660
Zhou, Q., Li, Y., Gao, Q., Yuan, H., Sun, L., Xi, H., & Wu, W. (2023). Prevalence of frailty among Chinese community-dwelling older adults: A systematic review and meta-analysis. International Journal of Public Health, 68, Article 1605964. https://doi.org/10.3389/ijph.2023.1605964
3D Cloud. (2023). The three types of virtual reality. 3D Cloud. https://3dcloud.com/what-is-virtual-reality/