簡易檢索 / 詳目顯示

研究生: 陳穎馨
Chen, Ying-Xin
論文名稱: 有機無機複合鈣鈦礦MAPbCl3的光多子吸收
Multiphoton Absorption in Organic-Inorganic Hybrid Perovskite MAPbCl3
指導教授: 魏百駿
Wei, Pai-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 88
中文關鍵詞: 有機無機複合鈣鈦礦非線性光學多光子吸收光致發光
外文關鍵詞: organic-inorganic hybrid perovskite, nonlinear optics, multiphoton absorption, photoluminescence
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有機無機複合鈣鈦礦材料因其出色的光電特性,如高吸收係數、長載流子傳輸距離、能隙可調與簡易製程,已逐漸成為近年發展新型光電與非線性光學元件中極具潛力的材料。多光子吸收 (multiphoton absorption, MPA) 作為重要的非線性光學機制之一,已在許多研究中展現出重要的應用價值;而鈣鈦礦材料普遍展現出高非線性極化率與顯著的多光子吸收能力。已有研究顯示,在不同波段激發下,MAPbX₃ 系列中的 MAPbI₃ 與 MAPbBr₃ 可進行雙光子吸收 (2PA),而 MAPbCl₃ 則能在 1064 nm 激發條件下發生三光子吸收 (3PA)。此外,其非線性吸收行為對偏振角度亦呈現依賴性,暗示其晶體結構可能存在異向性,這種現象與理論上立方對稱結構所預期的同向性形成對比,進一步揭示出材料內部的微結構或缺陷可能對其光學特性有深遠影響。因此,本研究以 MAPbCl₃ 單晶為材料,以 1064 nm 雷射光進行激發,並觀察其光致發光行為。實驗結果證實 MAPbCl₃ 可在多光子吸收條件下產生明顯放光,且發光行為隨激發位置、偏振角與溫度變化展現出高度多樣性。其中,發現包含藍、綠、紅與近白光等多色發射,而藍色及綠色螢光波峰具窄半高寬特性,其窄波峰特性推測可能來自強雷射功率下產生的粒子數反轉,結合低溫誘導形成之 strain domain ,使其具備上轉換雷射增益的條件。綜合實驗觀察,MAPbCl₃ 展現出優異的非線性光學響應與多樣化的輻射複合特性,不僅有助於深入理解其能帶結構與複合行為,也顯示其作為上轉換雷射與多波段發光元件之潛力,為單一材料實現白光發光元件提供了可能性。

    Organic-inorganic hybrid perovskites have emerged as promising materials for next-generation optoelectronic and nonlinear optical devices, owing to their outstanding properties such as high absorption coefficients, long carrier diffusion lengths, tunable bandgaps, and facile solution processing. Multiphoton absorption (MPA), as one of the key nonlinear optical behaviors, has demonstrated significant potential in diverse applications, while perovskites in particular exhibit inherently large nonlinear susceptibility and pronounced multiphoton absorption responses. In this work, MAPbCl₃ single crystals were investigated through nonlinear optical measurements, with a specific focus on their MPA and photoluminescence (PL) behaviors. Under excitation by a 1064 nm laser, MAPbCl₃ exhibited pronounced three-photon absorption, leading to multicolor emission spanning the blue, green, and red spectral regions, and even approaching near-white light emission. The PL characteristics varied with excitation position, polarization angle, and temperature, suggesting multiple radiative recombination pathways. Notably, the blue and green emission peaks exhibited narrow full-width at half maximum (FWHM), which may be attributed to population inversion induced under high laser power in conjunction with strain domains formed at low temperature. Overall, the experimental observations highlight the excellent nonlinear optical responses and diverse recombination mechanisms of MAPbCl₃. These results not only provide deeper insights into its band structure and carrier dynamics but also demonstrate its potential for applications in up-conversion lasers and multiband light-emitting devices, offering a feasible pathway toward white-light emission from a single material.

    摘要 i Extended Abstract ii 誌謝 vi 目錄 viii 表目錄 x 圖目錄 xi 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 文獻回顧 3 2.1 鈣鈦礦 (Perovskite) 3 2.2 MAPbCl3鈣鈦礦 7 2.3 光致發光 (Photoluminescence) 9 2.3.1 光致發光之複合機制 9 2.3.2 自發輻射 (Spontaneous emission) 12 2.3.3 受激輻射 (Stimulated emission) 12 2.4 非線性光學 (Nonlinear optics) 15 2.5 多光子吸收 17 2.6 鹵化物鈣鈦礦的多光子吸收 19 第三章 實驗原理與方法 27 3.1 實驗原理 27 3.1.1 光致發光量測系統 27 3.1.2 二次諧波生成量測系統 (Second harmonic generator) 29 3.1.3 X光繞射儀 (X-ray diffraction, XRD) 30 3.1.4 掃描式電子顯微鏡 (Scanning electron microscopy, SEM) 31 3.1.5 X光激發放光光譜 32 3.2 實驗方法 33 3.2.1 實驗藥品 33 3.2.2 實驗儀器 34 3.2.3 MAPbCl3單晶製備 35 3.2.4 MAPbCl3薄膜製備 36 第四章 結果與討論 39 4.1 MAPbCl3多光子吸收 39 4.1.1 MAPbCl3特殊放光現象 39 4.1.2 紅色螢光 42 4.1.3 橘色螢光 46 4.1.4 綠色螢光 49 4.1.5 多色螢光 53 4.2 不同雷射光源產生之螢光 56 4.3 時間解析X光激發放光光譜 (TR-XEOL) 58 4.4 MAPbCl3薄膜之大氣製程開發 59 4.4.1 一步法 59 4.4.2 兩步法 66 第五章 結論 67 第六章 參考文獻 68

    1 Kuang, Y. et al. Enhanced optical absorption in perovskite/Si tandem solar cells with nanoholes array. Nanoscale Res. Lett. 15, 1-6 (2020).
    2 Cheng, Y., Guo, X., Shi, Y. & Pan, L. Recent advance of high-quality perovskite nanostructure and its application in flexible photodetectors. Nanotechnology 35, 242001 (2024).
    3 Liu, S. et al. Imaging the long transport lengths of photo-generated carriers in oriented perovskite films. Nano Lett. 16, 7925-7929 (2016).
    4 Bai, S. et al. High-performance planar heterojunction perovskite solar cells: Preserving long charge carrier diffusion lengths and interfacial engineering. Nano Res. 7, 1749-1758 (2014).
    5 Wang, Y., Qu, J. & Wen, Q. CH3NH3PbI3 perovskite/silver nanowire complex with higher absorption and stability. J. Electron. Mater. 50, 5177-5183 (2021).
    6 Miah, M. H., Khandaker, M. U., Rahman, M. B., Nur-E-Alam, M. & Islam, M. A. Band gap tuning of perovskite solar cells for enhancing the efficiency and stability: issues and prospects. RSC Adv. 14, 15876-15906 (2024).
    7 Kumawat, N. K. et al. Band gap tuning of CH3NH3Pb (Br1–x Clx)3 hybrid perovskite for blue electroluminescence. ACS Appl. Mater. Interfaces 7, 13119-13124 (2015).
    8 Yang, T. et al. Manipulating wide-band-gap perovskite compositions via Br sources for highly efficient perovskite/silicon tandem solar cells. ACS Appl. Energy Mater. 7, 5755-5764 (2024).
    9 Branker, K., Pathak, M. & Pearce, J. M. A review of solar photovoltaic levelized cost of electricity. Renewable Sustainable Energy Rev. 15, 4470-4482 (2011).
    10 Wang, S. et al. Growth of metal halide perovskite materials. Sci. China Mater. 63, 1438-1463 (2020).
    11 Xu, Q., Datta, A., Becla, K., Becla, P. & Motakef, S. Development of continuous solution growth method for growth of large and high-quality perovskite single crystals. Chem. Eng. J. 475, 146155 (2023).
    12 Elnaggar, M. M. Optimizing PbI2: MAI precursor ratio for enhanced surface uniformity and performance in inverted perovskite solar cells. Mater. Lett. 384, 138133 (2025).
    13 Kuan, C.-H., Kuo, P.-T., Hou, C.-H., Shyue, J.-J. & Lin, C.-F. Growth process control produces high-crystallinity and complete-reaction perovskite solar cells. RSC Adv. 10, 35898-35905 (2020).
    14 Kim, J. Y., Lee, J.-W., Jung, H. S., Shin, H. & Park, N.-G. High-efficiency perovskite solar cells. Chem. Rev. 120, 7867-7918 (2020).
    15 Chen, Y., Zhang, L., Zhang, Y., Gao, H. & Yan, H. Large-area perovskite solar cells–a review of recent progress and issues. RSC Adv. 8, 10489-10508 (2018).
    16 Park, N.-G. Perovskite solar cells: an emerging photovoltaic technology. Mater. Today 18, 65-72 (2015).
    17 Nie, W. et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347, 522-525 (2015).
    18 Fakharuddin, A. et al. Perovskite light-emitting diodes. Nat. Electron. 5, 203-216 (2022).
    19 Gao, W. & Yu, S. F. Reality or fantasy—Perovskite semiconductor laser diodes. EcoMat 3, e12077 (2021).
    20 Lin, K. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245-248 (2018).
    21 Veldhuis, S. A. et al. Perovskite materials for light‐emitting diodes and lasers. Adv. Mater. 28, 6804-6834 (2016).
    22 Chun, D. H. et al. Halide perovskite nanopillar photodetector. ACS Nano 12, 8564-8571 (2018).
    23 Li, C., Ma, Y., Xiao, Y., Shen, L. & Ding, L. Advances in perovskite photodetectors. InfoMat 2, 1247-1256 (2020).
    24 Xie, C., Liu, C. K., Loi, H. L. & Yan, F. Perovskite‐based phototransistors and hybrid photodetectors. Adv. Funct. Mater. 30, 1903907 (2020).
    25 Pan, L., Shrestha, S., Taylor, N., Nie, W. & Cao, L. R. Determination of x-ray detection limit and applications in perovskite x-ray detectors. Nat. Commun. 12, 5258 (2021).
    26 Lin, C.-F. et al. Perovskite-based x-ray detectors. Nanomaterials 13, 2024 (2023).
    27 Wei, H. et al. Sensitive x-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat. Photonics 10, 333-339 (2016).
    28 Wenhuan, G. et al. Perovskite-based near-infrared photodetectors. Prog. Chem. 36, 187-203 (2024).
    29 Wei, T. C. et al. Nonlinear absorption applications of CH3NH3PbBr3 perovskite crystals. Adv. Funct. Mater. 28, 1707175 (2018).
    30 Wei, K., Chen, B., Zhang, L., Zhu, H. & Fan, S. Investigation on multiphoton absorption in MAPbBr3 and MAPbCl3 single-crystals under excitation wavelength up to mid-infrared. Laser Phys. Lett. 19, 056003 (2022).
    31 Chen, J., Zhang, W. & Pullerits, T. Two-photon absorption in halide perovskites and their applications. Mater. Horiz. 9, 2255-2287 (2022).
    32 He, G. S., Tan, L.-S., Zheng, Q. & Prasad, P. N. Multiphoton absorbing materials: molecular designs, characterizations, and applications. Chem. Rev. 108, 1245-1330 (2008).
    33 Saouma, F. O., Park, D. Y., Kim, S. H., Jeong, M. S. & Jang, J. I. Multiphoton absorption coefficients of organic–inorganic lead halide perovskites CH3NH3PbX3 (X= Cl, Br, I) single crystals. Chem. Mater. 29, 6876-6882 (2017).
    34 Bernasconi, A. et al. Ubiquitous short-range distortion of hybrid perovskites and hydrogen-bonding role: The MAPbCl3 case. J. Phys. Chem. C 122, 28265-28272 (2018).
    35 Attfield, J. P., Lightfoot, P. & Morris, R. E. Perovskites. Dalton Trans. 44, 10541-10542 (2015).
    36 Giorgi, G., Fujisawa, J.-I., Segawa, H. & Yamashita, K. Small photocarrier effective masses featuring ambipolar transport in methylammonium lead iodide perovskite: a density functional analysis. J. Phys. Chem. Lett. 4, 4213-4216 (2013).
    37 Li, C. et al. Formability of abx3 (x= f, cl, br, i) halide perovskites. Structural Science 64, 702-707 (2008).
    38 Wang, K., Yang, D., Wu, C., Sanghadasa, M. & Priya, S. Recent progress in fundamental understanding of halide perovskite semiconductors. Prog. Mater Sci. 106, 100580 (2019).
    39 Han, Y., Yue, S. & Cui, B. B. Low‐dimensional metal halide perovskite crystal materials: structure strategies and luminescence applications. Adv. Sci. 8, 2004805 (2021).
    40 Liu, P. et al. High‐quality Ruddlesden–Popper perovskite film formation for high‐performance perovskite solar cells. Adv. Mater. 33, 2002582 (2021).
    41 Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. JACS 131, 6050-6051 (2009).
    42 Shi, S., Li, Y., Li, X. & Wang, H. Advancements in all-solid-state hybrid solar cells based on organometal halide perovskites. Mater. Horiz. 2, 378-405 (2015).
    43 Jiang, X. et al. Isomeric diammonium passivation for perovskite–organic tandem solar cells. Nature 635, 860-866 (2024).
    44 Zhang, Q. et al. Advances in small perovskite‐based lasers. Small Methods 1, 1700163 (2017).
    45 Dong, H., Zhang, C., Liu, X., Yao, J. & Zhao, Y. S. Materials chemistry and engineering in metal halide perovskite lasers. Chem. Soc. Rev. 49, 951-982 (2020).
    46 Amat, A. et al. Cation-induced band-gap tuning in organohalide perovskites: interplay of spin–orbit coupling and octahedra tilting. Nano Lett. 14, 3608-3616 (2014).
    47 Thu Nguyen, T. T. et al. Raman scattering studies of the structural phase transitions in single-crystalline CH3NH3PbCl3. J. Phys. Chem. Lett. 11, 3773-3781 (2020).
    48 Kolomiets, V. et al. Electronic structure, reflectivity and X-ray luminescence of MAPbCl3 crystal in orthorhombic phase. Sci. Rep. 15, 12912 (2025).
    49 Hu, J. K. et al. Dual Crystal‐Liquid Thermal Transport Behavior in MAPbCl3. Small 21, 2408773 (2025).
    50 Maculan, G. et al. CH3NH3PbCl3 single crystals: inverse temperature crystallization and visible-blind UV-photodetector. J. Phys. Chem. Lett. 6, 3781-3786 (2015).
    51 Chen, J. et al. Carrier dynamic process in all-inorganic halide perovskites explored by photoluminescence spectra. Photonics Res. 9, 151-170 (2021).
    52 Spindler, C., Galvani, T., Wirtz, L., Rey, G. & Siebentritt, S. Excitation-intensity dependence of shallow and deep-level photoluminescence transitions in semiconductors. J. Appl. Phys. 126 (2019).
    53 Zhang, Y., Lötstedt, E. & Yamanouchi, K. Mechanism of population inversion in laser-driven N2+. J. Phys. B: At. Mol. Opt. Phys. 52, 055401 (2019).
    54 Andronov, A. A. et al. Stimulated emission from optically pumped quantum dots. Quantum Electron. 40, 579 (2010).
    55 Zhang, W. et al. Monolithic optical resonator for ultrastable laser and photonic millimeter-wave synthesis. Commun. Phys. 7, 177 (2024).
    56 Göppert‐Mayer, M. Elementary processes with two quantum transitions. Ann. Phys. 18, 466-479 (2009).
    57 Maiman, T. H. Stimulated optical radiation in ruby. nature 187, 493-494 (1960).
    58 Scheps, R. Upconversion laser processes. Prog. Quantum Electron. 20, 271-358 (1996).
    59 Pan, J. et al. Air-stable surface-passivated perovskite quantum dots for ultra-robust, single-and two-photon-induced amplified spontaneous emission. J. Phys. Chem. Lett. 6, 5027-5033 (2015).
    60 Gu, Z. et al. Two‐photon pumped CH3NH3PbBr3 perovskite microwire lasers. Adv. Opt. Mater. 4, 472-479 (2016).
    61 Pramanik, A., Patibandla, S., Gao, Y., Gates, K. & Ray, P. C. Water triggered synthesis of highly stable and biocompatible 1D nanowire, 2D nanoplatelet, and 3D nanocube CsPbBr3 perovskites for multicolor two-photon cell imaging. JACS Au 1, 53-65 (2020).
    62 Liu, S. et al. Perovskite smart windows: the light manipulator in energy‐efficient buildings. Adv. Mater. 36, 2306423 (2024).
    63 Xie, F. X. et al. Vacuum-assisted thermal annealing of CH3NH3PbI3 for highly stable and efficient perovskite solar cells. ACS Nano 9, 639-646 (2015).
    64 Xiao, Z. et al. Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv. Mater. 26 (2014).

    無法下載圖示 校內:2030-08-26公開
    校外:2030-08-26公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE