| 研究生: |
葉志傑 Yeh, Chih-Chieh |
|---|---|
| 論文名稱: |
以液相沉積法在塑膠基板成長二氧化矽研製有機薄膜電晶體 Pentacene-Based Organic Thin Film Transistors on Plastic Substrate Coated with Liquid Phase Deposited SiO2 |
| 指導教授: |
溫添進
Wen, Ten-Chin 王永和 Wang, Yeong-Her |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 電漿處理 、液相沉積二氧化矽 、伍環素 、有機薄膜電晶體 、塑膠基板 |
| 外文關鍵詞: | organic thin film transistor, plasma treatment, pentacene, plastic substrate |
| 相關次數: | 點閱:153 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文包含兩部分,第一部份乃為使用液相氧化物沉積法於塑膠成長二氧化矽薄膜,其目的為增加塑膠基板與後續元件製作之付著力與基板本身對光之穿透率以及對水氣之阻隔能力。吾人使用液相氧化物沉積法於經氧/氬電漿處理之PES塑膠基板。由XPS頻譜分析可知,經電漿處理後基板表面COO(288.9eV)鍵結對CH2(284.5eV)鍵結之強度比例明顯提高。而在後續乃使用掃描式電子顯微鏡和經稀釋後之氫氟酸對氧化薄膜之蝕刻速率以及表面漏電流來檢視液相氧物薄膜品質。於第二部份,吾人介紹有機薄膜電晶體之製作。於實驗中,發現使用五環素之厚度為67奈米可獲得較高之電流值,以及使用鉑為汲極與源極之電極金屬可有較低之載子注入位障。為降低主動式有機電激發光二極體製作光罩數,吾人使用導電性銦錫氧化物為用以驅動有機電激發光二極體之電晶體閘極金屬。然而於元件轉換特性中,發現使用導電性銦錫氧化物為閘極電極將使原件之遲滯現象更為惡化。而於導電性銦錫氧化物之上蒸鍍鋰化氟分子將有助於該現象之改善。
This thesis includes two parts. The first part deals with the oxide layer coating on the PES substrate for the enhancement of adhesion, optical transmittance, and water vapor impermeability. The liquid phase deposition method to grow the silicon dioxide interlayer on the plastic substrates with the O2/Ar plasma pre-treatment is investigated. It is found that the ratio of COO (288.9eV) to CH2 (284.5eV) has increased with the O2/Ar plasma pre-treatment by the X-ray photoelectron spectroscopy measurement. After which, the quality of LPD-SiO2 films on the substrates with or without the plasma pre-treatment is examined by using scanning electron microscopy, etching rate of the oxide layer by the diluted HF solution, and surface leakage current measurement. In the second part, we show the organic thin film fabrication. The optimal thickness of pentacene is found to be about 67 nm. A smaller injection barrier can be obtained by using Pt as a drain and source contact electrode. In order to reduce one mask process of the AM-OLED device, we use ITO as the gate metal instead of Al. However, from the transfer characteristic, the worse hysteresis effect can be observed. A thin LiF layer is deposited onto the ITO surface to reduce ITO surface work function. After that, the ratio for off state current can be reduced about two orders.
[1] B.L. Harrison, “E-books and the future of reading,” Computer Graphics and Applications, IEEE vol. 20, no. 3, p. 32, 2000.
[2] F. Zhu, X. T. Hao, O. K. Soo, Y. Li, and L. W. Tan, “Polymer electronics systems – polytronics,” Proceedings of the IEEE, vol. 93, no. 8, p. 1400, 2005.
[3] J. H. Cheon, J. H. Choi, J. H. Hur, J. Jang, H. S. Shin, J. K. Jeong, Y. G. Mo, and H. K. Chung, “Active-matrix OLED on bendable metal foil,” IEEE Transactions on Electron Devices, vol. 53, no. 5, p. 1273, 2005.
[4] L. Zhou, A. Wanga, S. C. Wu, J. Sun, S. Park, and T. N. Jackson, “All-organic active matrix flexible display,” Appl. Phys. Lett. vol. 88, p. 083502, 2006.
[5] A. Sugimoto, H. Ochi, S. Fujimura, A. Yoshida, T. Miyadera, M. Tsuchida, “Flexible OLED displays using plastic substrates,” IEEE Journal of Selected Topics in Quantum Electronics. vol. 10, no. 1, p. 107, 2004.
[6] S. K. Park, Y. H. Kim, J.I. Han, D. G. Moon, W. K. Kim, “High-performance polymer tfts printed on a plastic substrate,” IEEE Transactions on Electron Devices, vol. 49, no. 11, p.2008, 2002.
[7] S. H. Won, J. H. Hur, C. B. Lee, H. C.l Nam, J. K. Chung, J. Jang, “Hydrogenated amorphous silicon thin-film transistor on plastic with an organic gate insulator,” IEEE Electron Device letters, vol. 25, no. 3, p.132, 2004.
[8] S. Polach, D. Hrst, G. Maier, T. Kallfass, E. Lueder, “Matrix of light sensors addressed by a-Si:H TFTs on a flexible plastic substrate,” Proc. SPIE, vol. 3649, p.31, 1999.
[9] E.V. Jelenkovic, K.Y. Tong, “Stability of nitrided silicon dioxide deposited by reactive sputtering,” Appl. Phys. Lett. vol. 67, p. 2693, 1995.
[10] S. C. Deshmukh, and E. S. Aydil, “Low-temperature plasma enhanced chemical vapor deposition of SiO2,” Appl. Phys. Lett. vol. 65, p. 3185, 1994.
[11] D.S. Wuu, W.C. Lo, L.S. Chang, R.H. Horng, “Properties of SiO2-like barrier layers on polyethersulfone substrates by low-temperature plasma-enhanced chemical vapor deposition,” Thin Solid Films, vol. 468, p. 105, 2004.
[12] Guo, Y. Bin, C. N. Hong, Franklin, “Adhesion improvements for diamond-like carbon films on polycarbonate and polymethylmethacrylate substrates by ion plating with inductively coupled plasma,” Diamond and Related Materials, vol. 12, no. 3-7, p. 946, 2003.
[13] D. S. Wavhal, E. R. Fisher, “Hydrophilic modification of polyethersulfone membranes by low temperature plasma-induced graft polymerization,” J. Membr. Sci., vol. 209, p. 255, 2002.
[14] S. Wu, Polymer interface and adhesion (New York :M. Dekker,c1982.), p. 297
[15] Juan Reyes-Labarta1, Miguel Herrero, Pilar Tiemblo, Carmen Mijangos, Helmut Reinecke, “Wetchemical surface modification of plasticized PVC. Characterization by FTIR-ATR and Raman microscopy,” Polymer, vol. 44, p. 2263, 2003.
[16] S. Wu, Polymer interface and adhesion (New York, M. Dekker,c1982.), p. 286
[17] F. Sarto, M. Alvisi, E. Melissano, A. Rizzo, S. Scaglione, L. Vasanelli, “Adhesion enhancement of optical coatings on plastic substrate via ion treatment,” Thin Solid Films, vol. 346, p. 196, 1999.
[18] J. H. Lee, J. S. Cho, S. K. Koh, D. Kim, “Improvement of adhesion between plastic substrates and antireflection layers by ion-assisted reaction,” Thin Solid Films, vol. 449, p. 147, 2004.
[19] C. Girardeaux, Y, Idrissi, J. J. Pireaux, R. Caudano, “Etching and functionalization of a fluorocarbon polymer by UV laser treatment,” Applied Surface Science, vol. 96-98, p. 586, 1996.
[20] Y. M. Chung, M. J. Jung, J. G. Han, M. W. Lee, Y. M. Kim, “Atmospheric RF plasma effects on the film adhesion property,” Thin Solid Films, vol. 447-448, p. 354, 2004.
[21] K. Pochner, S. Beil, H. Horn, and M. Blomer, “Treatment of polymers for subsequent metallization using intense UV radiation or plasma at atmospheric pressure,” Surface and Coatings Technology, vol. 97, p. 372, 1997.
[22] C. M. Chan, Polymer Surface Modification and Characterization (Munich; Hanser; c1994.New York: Hanser), pp. 237.
[23] M. P. Houng, Y. H. Wang, C. J. Huang, S. P. Huang, and J. H. Horng, “Quality optimization of liquid phase deposition SiO2 films on gallium arsenide,” Solid-State Electronics, vol. 44, p.1917, 2000.
[24] H. R. Wu, Y. H. Wang and M. P. Houng, “Liquid phase deposited SiO2 on GaN and its application to MOSFET,” Thesis for Master of Science, Department of Electrical Engineering, National Cheng Kung University, 2001
[25] W. J. Chang, M. P. Houng and Y. H. Wang, “Investigation on the conduction mechanism of ultra thin fluorinated silicon dioxides,” Dissertation for Doctor of Philosophy, Department of Electrical Engineering, National Cheng Kung University, (2001)
[26] C. J. Huang, W.C. Shih, “Optimization of pretreatment for liquid-phase deposition of SiO2 on ARTON plastic substrate,” Journal of Electronic Materials vol. 32, no. 6, p.478, 2003.
[27] D. P. Wooddruff, T. A. Delchar, Modern Techniques of Surface Science (Cambridge University Press 1994).
[28] I. G. Hill, A. Kahn, “Energy level alignment at interfaces of organic semiconductor heterostructures,” J. Appl. Phys. vol. 84, p. 5583, 1998.
[29] Z. Y. Xie, J. S. Huang, S. Y. Liu, Y. Wang, J. C. Shen, “Tuning of chromaticity in organic multiple-quantum well white light emitting devices,” Synthetic Metals, vol. 108, p. 81, 2000.
[30] T. M. Brown, R. H. Friend, I. S. Millard, D. J. Lacey, T. Butler, J. H. Burroughes, F. Cacialli, “Electronic line-up in light-emitting diodes with alkali-halide/metal cathodes,” J. Appl. Phys. vol. 93, p. 6159, 2003.
[31] S. M. Sze, Semiconductor Devices Physics and Technology 2nd, John Wiley & Sons, 2001.
[32] C. D. Dimitrakopoulos, D. J. Mascaro, “Organic thin-film transistors: A review of recent advances,” IBM, vol. 45, p. 11, 2001.
[33] G. Horowitz, P. Delannoy, “An analytical model for organic-based thin-film transistors,” J. Appl. Phys. vol. 70, p. 469, 1991.
[34] G. Horowitz, M. E. Hajlaoui, R. Hajlaoui, “Temperature and gate voltage dependence of hole mobility in polycrystalline oligothiophene thin film transistors,” J. Appl. Phys. vol. 87, no. 9, p. 4456, 2000.
[35] G. Horowitz, “Organic Field-Effect Transistors,” Adv. Mater. vol. 10, no. 5, p. 365, 1998.
[36] J. Veres, S. Ogier, G.. Lloyd, Dago de Leeuw, “Gate Insulators in Organic Field-Effect Transistors,” Chem. Master. vol. 16, p. 4543, 2004.
[37] M. J. Powell, “The physics of amorphous-silicon thin-film transistors,” IEEE Transactions on Electron Devices, vol. 36, no. 12, p. 2753, 1989.
[38] R. A. Street, M. J. Thompson, “Electronic states at the hydrogenated amorphous silicon/silcon nitride interface,” Appl. Phys. Lett., vol. 45, p.769, 1984.
[39] K. Hiranaka, T. Yoshimura, T. Yamaguchi, “Effects of the Deposition Sequence on Amorphous Silicon Thin-Film Transistors,” Jpn. J. appl. Phys. 28, p. 2197, 1989.
[40] IEEE standard for test methods for characterization of organic transistors and material 2004.
[41] R. L. Park, M. G. Lagally, Methods of Experimental Physics, Vol. 22 Solid State Physics, Academic Press, 1985.
[42] R. A. Street, A. Salleo, “Contact effects in polymer transistors,” Appl. Phys. Lett. no. 81, p. 2887, 2002.
[43] S. H. Jin, C. A. Lee, K. D. Jung, H. Shin, B. G. Park, J. D. Lee, “Performance improvement of scaled-down top-contact OTFTs by two-step-deposition of pentacene,” IEEE Electron Device Letters, vol. 26, no. 12, p. 903 (2005).
[44] S. C. Lim, S. H. Kim, J. H. Lee, H. Y. Yu, Y. Park, D. Kim, T. Zyung, “Organic thin-film transistors on plastic substrates,” Materials Science and Engineering B, vol.121, no. 3, p. 211, 2005.
[45] S. Y. Park, M. Park, H. H. Lee, “Cooperative polymer gate dielectrics in organic thin-film transistors,” Appl. Phys. Lett. vol. 85, p. 2283, 2004.
[46] D. A. Neamen, Semiconductor Physics and Devices: Basic Principles 3rd, McGraw-Hill, 2003
[47] S. E. Shaheen, G. E. Jabbour, M. M. Morrell, Y. Kawable, B. Kippelen, N. Peyghambarian, M.-F. Nabor, R. Schlaf, E. A. Mash, N. R. Armstrong, “Bright blue organic light-emitting diode with improved color purity using a LiF/Al cathode,” J. Appl. Phys., vol. 84, p. 2324, 1998.
[48] H. Peisert, M. Knupfer, J. Fink, “Energy level alignment at organic/metal interfaces: Dipole and ionization potential,” Appl. Phys. Lett. vol. 81, p. 2400, 2002.
[49] C. J. Brabec, S. E. Shaheen, C. Winder, N. S. Sariciftci, P. Denk, “Effect of LiF/metal electrodes on the performance of plastic solar cells,” Appl. Phys. Lett. vol. 80, p. 1288, 2002.
[50] H. Ishii, K. Sugiyama, E. Ito, K. Seki, “Energy Level Alignment and Interfacial Electronic Structures at Organic/Metal and Organic/Organic Interfaces,” Adv. Mater. vol. 11, no. 8, p. 605, 1999.
[51] H.R. Huff, D.C. Gilmer (eds.), High dielectric constant materials: VLSI MOSFET applications, Springer, 2005.