| 研究生: |
賴鴻年 Lai, Hung-Nien |
|---|---|
| 論文名稱: |
利用水質模式探討氣候變遷對河川生態之衝擊 Application of a Water Quality Model to Determine Impacts of Climate Change on River Ecosystems |
| 指導教授: |
孫建平
Suen, Jian-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 河川生態系 、氣候變遷 、鹽度 、類神經網路 |
| 外文關鍵詞: | River ecosystem, Climate Change, Salinity, Back-Propagation Neural Networks |
| 相關次數: | 點閱:99 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
生態系(ecosystem)概念自1971年由Odum提出後逐漸受到重視,其重要性於自然角度為生物多樣性,於人類角度為生態系服務,此二者對於人類自身的經濟發展或是與環境間的永續發展均有影響,因此維護生態系的健全度是重要的。影響生態系之健全度因素很多,氣候變遷(Climate Change)被認為是其中一項,以河川生態系來說,因氣候變遷會改變水文、水質等參數,進而影響到河川生態系內部複雜之交互作用,最終將改變其健全及穩定度。
本研究目的在於探討在氣候變遷下,河川生態系將受到何種衝擊。研究方法為利用水質參數─鹽度做為探討媒介,利用類神經網路模式推估鹽度在氣候變遷下之改變情況,再以此改變情況配合河川生物之耐鹽度關係,探討氣候變遷對於河川生態環境之衝擊。研究工具利用倒傳遞類神經網路建立鹽度推估模式,以「固定日數降雨」、「固定日數無降雨」、「海平面相對上升」、「潮位」及「Julian Date」五個變數為模式輸入、「鹽度」為模式輸出,配合聯合國政府氣候變遷小組IPCC提供之情境(A1B、B1)做短期(2010-2045)及長期(2081-2100)模擬,並將鹽度推估結果用機率概念描述不確定性問題。
本篇以嘉義縣朴子溪流域為研究區域,結果顯示,鹽度推估值均有增加的趨勢(長期>短期>現況),且增加幅度隨著與河口距離增加而漸小,但於兩情境間並無明顯差異。以此鹽度推估結果配合生物(植物、動物)之耐鹽度範圍探討研究區域河川生態環境所受之衝擊,發現未來淡鹹水體的轉變將會是此處淡水魚類最主要的威脅,淡水區域減少、鹹水區域增加可能迫使淡水魚群往上游遷徙;而對下游河口之紅樹林來說,未來鹽度值(長期)將普遍高於其生長鹽度上限值,此將造成紅樹林數量及空間上的變化。
The importance of ecosystems such as biodiversity and ecosystem services has been realized since 1971 that Odum brought this concept up. In order to ensure the importance and function of ecosystems in future days, it is indeed to maintain the healthiness of ecosystems. Climate change can impact ecosystems in many different ways including through change of hydrology. The purpose of this thesis is to discuss the impact of climate change to river ecosystems by studying salinity change. Salinity, which is highly related to the organism in the river ecosystems, is a good indicator for impact of climate change in river ecosystems. The tool used to build the salinity projecting model is back-propagation neural networks, which is a robust tool to simulate water quality. And the concept of probability is used to solve the uncertainty issues.
The study area would be Pu-Zi river basin, Chiayi, Taiwan. And two scenarios, A1B and B1, from the results show the increase of salinity among all sites. And for the organisms such as fishes and riparian plants, the altered of water classification (fresh water→brackish water…etc) is the main threaten to fishes, and highly probability of high salinity event is a problem to plants.
1. Bohnert H.J., Nelson D.E., Jensen R.G., “Adaptations to Environmental Stresses”, Plant Cell, (7), pp.1099-1111, 1995
2. Bowden G.J., Maier H.R., Dandy G.C., “Input Determination for Neural Network Models in Water Resources Applications. Part 1. Case Study: Forecasting Salinity in a River”, Journal of Hydrology, (301), pp.93-107, 2005
3. Bowers J.A., Shedrow C.B., ” Predicting Stream Water Quality using Artificial Neural Networks”, WSRC-MS-2000-00112, 2000
4. Chen Y.J., Wang G.S., C.P. Tung, “Potential Impacts of Global Climate Change on Water Quality”, 4th GCSD, 2007
5. Clair T.A., Ehrman. J.M., “Variations in discharge and dissolved organic carbon and nitrogen export from terrestrial basins with changes in climate: A neural network approach”, Limnology and Oceanography, 41(5), pp.921-927 , 1996
6. Clough B.F., “Growth and Salt Balance of the Mangroves Avicennia marina (Forsk.) Vierh. And Rhizophora stylosa Griff. In Relation to Salinity”, Australian Journal of Plant Physiology, 11(5), pp.419-430, 1984
7. Cramer W. & Coauthors, “Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models”. Global Change Biology, 7(4), pp.357-373, 2001
8. Forch C., Knudsen M., Sörensen S.P.L., “Berichte über die Konstantenbestimmungen zur Aufstellung der hydrographischen Tabellen. D. Kgl. Danske Vidensk. Selsk. Skrifter, 6” . Raekke, naturvidensk. og mathem., Afd XII.1, 151 pp., 1902.
9. Hecht-Nielson R., “Kolmogorov’s Mapping Neural Network Existence Theorem”, First IEEE International Joint Conference on Neural Networks, San Diego, CA 1987
10. IPCC, “Climate Change 2001: Vulnerability, Consequences, and Options. IPCC Working Group II, Third Assessment Report”, Cambridge University Press, 2001
11. IPCC, “Climate Change 2007: The Physical Science Basis.Contribution of Working Group I, Fourth Assessment Report”, Cambridge University Press, 2007
12. IPCC, “Climate Change 2007: Impacts, Adaptation and Vulnerability. IPCC Working Group II,Fourth Assessment Report”, Cambridge University Press, 2007
13. Khan M.A., Aziz I., “Salinity Tolerance In Some Mangrove Species From Pakistan”, Wetlands Ecology and Management, (9), pp.219–223, 2001
14. Lek S., Guiresse M., Giraudel J-L, “Predicting stream nitrogen concentration from watershed features using neural networks.”, Water Research, 33(16), pp. 3469-3478, 1999
15. Lissner J., Schierup H. H., “Effects of Salinity on the Growth of Phragmites Australis ”, Aquatic Botany, 55(4), pp. 247-260, 1997
16. Marsh G.P., “Man and Nature”, Charles Scribner, New York. 472pp, 1864
17. Mellor G. L., “Introduction to Physical Oceanography”, Springer, ISBN 1563962101 , p.169, 1996
18. Najah A., Elshafie A., Karim O.A., Jaffar O., “Prediction of Johor River Water Quality Parameters Using Artificial Neural Networks”, European Journal of Scientific Research, ISSN 1450-216X , 28(3), pp.422-435, 2009
19. Odum E.P., “Fundamentals of ecology”, 3rd edition, Saunders New York, 1971
20. Orth D.J., “Ecological considerations in the development and application of instream flow-habitat models”, Regulated Rivers:Research and Management., 1987
21. Pawlowicz R., Beardsley B., Lentz S., “Classical tidal harmonic analysis including error estimates in MATLAB using T TIDE”, Computers & Geosciences, (28), pp. 929-937, 2002
22. Poff N.L., Tokar S., Johnson P., ” Stream hydrological and ecological responses to climate change assessed with an artificial neural network”, Limnology and Oceanography, 41(5), pp. 857-863, 1996
23. Reddy M.P.M., M. Affholder, “Descriptive physical oceanography: State of the Art”, 2001
24. Rogers L.L., Dowla F.U., “Optimization of Groundwater Remediation Using Artificial Neural Networks with Parallel Solute Transport Modeling”, Water Resources Research, 30(2), pp. 457-481, 1994
25. Rotaquio JR. E. L., Nakagoshi N., Rotaquio R. L., “Does Mangroves Kandelia candel (L.) Druce Follows a Mangrove Zonation, Soil Salinity and Substrate for Survival ?”, Hikobia, 2008
26. Singh K.P., Basant A., Malik A., Jain G., “Artificial neural network modeling of the river water quality—A case study”, Ecological Modelling, (220), pp.888–895, 2009
27. Smith J., Eli R.N., “Neural-network models of rainfall-runoff processes.”, Journal of water resources planning and management, 121(6), pp. 499-508, 1997
28. Stewart R.H., “Introduction To Physical Oceanography”, 2007
29. Suen J.P., Eheart J.W. , “Evaluation of Neural Networks for Modeling Nitrate Concentrations in Rivers”, Journal of Water Resources Planning and Management-ASCE, 129(6), pp. 505-510, 2003
30. Su Y.T. & Coauthors, “A Simulation Model for Projecting Changes in Salinity Concentrations and Species Dominance in the Coastal Margin Habitats of Everglades”, Ecological Modeling, (213), pp. 245-256, 2008
31. Taiz L., Zeiger E., “Plant Physiology”, Sunderland, Massachusetts: Sinauer Associates, Inc., 1998
32. U.S. EPA, http://www.epa.gov/climatechange/effects/water/quality.html, 2010/05/13 linked
33. Xiong L., Schumaker K.S., Zhu J.K., ”Cell Signaling during Cold, Drought, and Salt Stress”, The Plant Cell, pp.165-183, 2002
34. Yokoi S., Bressan R. A., Hasegawa P. M., “Salt Stress Tolerance of Plants”, JIRCAS Working Report, pp. 25-33, 2002
35. Yu P.S., Wang Y.C., “Impact of climate change on hydrological processes over a basin scale in northern Taiwan”, Hydrological Processes, 23(25), pp.3556-3568 , 2010
36. Zaier I., Shu C., Ouarda T.B.M.J., Seidou O., Chebana F., “Estimation of Ice Thickness on Lakes Using Artificial Neural Network Ensembles”, Journal of Hydrology, 383, pp. 330-340, 2010
37. 王美智,「台灣四種原生禾草耐鹽性之研究」,國立中興大學植物研究所碩士論文,1998
38. 王根樹 ,「永續水質管理:全球氣候變遷與飲用水水質」 ,第四屆全球變遷與永續發展研習營 ,第1-11頁,2007
39. 王瑞鋐,「考量下游水質及河川流態於水庫最佳化操作之研究」,國立成功大學水利及海洋工程研究所碩士論文,2009
40. 王露儀,「重金屬及鹽分對水筆仔苗木生長及生理的影響」,國立嘉義大學林業研究所碩士論文,2002
41. 王鐵良、蘇芳莉、張爽、王立業,「鹽脅迫對蘆葦和香蒲生理特性的影響」,瀋陽農業大學學報,第499-501頁,2008
42. 尹相志,「SQL Server 2008 Data Mining 資料採礦」,悅知文化出版,2009
43. 行政院環境保護署,「朴子溪水質改善與生態系生物多樣性變化研析」,EPA-96-G103-02-241,1997
44. 行政院環境保護署,「聯合國氣候變化綱要公約-國家通訊」,2002
45. 朱錦忠,「環境生態學」,新文京開發出版,2003
46. 李如倩,「裂片石蓴protein disulfide isomerase及 thioredoxin 基因在高鹽逆境的表現」,國立中山大學生物科學研究所碩士論文,2007
47. 李庭鵑,「氣候變遷衝擊河川水質永續管理之長期預警機制」,國立台灣大學生物環境系統工程研究所碩士論文,2006
48. 汪中和、郭欽慧、張鳳嬌,「臺灣地下水文環境的變遷」,經濟部中央地質調查所彙刊,(17),第175-196頁,2004
49. 何宗翰,「氣候變遷影響集水區氮磷輸出之研究」,國立中央大學土木工程研究所碩士論文,2006
50. 周世凱,「應用類神經模式推估未設測站之自然流態」,國立成功大學水利及海洋工程研究所碩士論文,2008
51. 周昌弘、張富鈞、黃元勳,「紅樹林生態研究之回顧」,台灣植物資源與保育論文集,第23-48頁,1987
52. 邱皓政,「量化研究與統計分析:SPSS中文視窗版資料分析範例解析」,五南出版社,2002
53. 范光龍,「台灣沿海水位波動現象之研究」,行政院國家科學委員會專題研究計畫,2005
54. 范貴珠,「土壤鹽度對欖李苗木生長及生理反應之影響」,國立中興大學森林研究所博士論文,1999
55. 施上粟,「潮間帶溼地生態水理模式建置及量化研究」,國立台灣大學土木工程研究所博士論文,2005
56. 施習德,「台灣的海岸生態」,台灣博物,(71),第58-69頁,2001
57. 陳立偉,「氣候變遷對水資源之衝擊評估-以牡丹水庫集水區為例」,私立中原大學土木工程研究所碩士論文,2007
58. 陳映志,「嘉義縣東石地區紅樹林分布變遷之研究」,國立台灣大學地理環境資訊研究所碩士論文,2001
59. 陳瑋旋,「應用假設情境於台灣森林生態區影響的評估」,國立中興大學森林研究所碩士論文,2005
60. 張斐章、張麗秋、黃浩倫,「類神經網路-理論與實務」,東華書局出版,2003
61. 張憲國,「海岸工程學」,第188-192頁,1999
62. 曾國禎,「台灣環島及東亞地區海平面上升之研究」,國立台灣海洋大學海洋環境資訊研究所碩士論文,2009
63. 董東璟、曾國禎、楊益升,「高雄與基隆長期海水位變動分析」,第30屆海洋工程研討會論文集,2008
64. 嘉義縣環境保護局,「朴子溪水質改善淨化史」,1996
65. 魏綺瑪,「利用統計降尺度法推估石門水庫集水區未來情境降水研究」,國立成功大學水利及海洋工程研究所碩士論文,2009