| 研究生: |
王楚弦 Wang, Chu-Hsien |
|---|---|
| 論文名稱: |
以電阻抗頻譜觀察鋼筋受加速腐蝕後之殘餘握裹 A spectroscopic study on the residual bonding resistance of reinforcing bars after rapid corrosion |
| 指導教授: |
侯琮欽
Hou, Tsung-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 交流阻抗頻譜 、等校電路 、氯離子 、鋼筋腐蝕 |
| 外文關鍵詞: | AC impedance method, equivalent circuit, chloride ion, rebar corrosion |
| 相關次數: | 點閱:184 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鋼筋混凝土材料為目前土木界常用之建築材料,本身擁有諸多良好工程性質,如工作性、耐久性、耐火性等,然而當結構體暴露於海邊等高鹽份環境下,該材料往往面臨鋼筋腐蝕之威脅。當鋼筋腐蝕,鋼筋表面產生氧化物(鐵鏽)沉積,氧化物結構鬆散生成後造成鋼筋體積膨脹,進而造成混凝土開裂,最終影響鋼筋混凝土結構物力學性質與耐久性。
為評估鋼筋鏽蝕程度,本研究製作固定水灰比之握裹試體,藉由改變氯離子含量使握裹試體擁有不同鋼筋鏽蝕程度,並額外製作與握裹試體配比相同之純混凝土試體,觀察氯離子對混凝土材料影響。本研究使用交流阻抗法,繪製交流電阻抗頻譜後,透過特定等校電路模型擬合,計算模型中對應之電學參數,並分別討論鋼筋與混凝土之電學性質變化。試體電學性質測量完畢後,混凝土試體與握裹試體分別進行抗壓試驗與鋼筋拉拔試驗,觀察氯離子對兩類試體之力學性質影響。因電阻抗量測現階段缺乏固定試驗流程,試驗結果往往僅適用於定性分析,因此本研究額外使用影像分析評估,試圖量化鋼筋鏽蝕程度佐證交流阻抗法之結果。
研究結果顯示,混凝土材料部份,氯離子含量會影響試體電阻率與電容值等電學參數但不影響試體抗壓強度。握裹試體部分,因本研究對鋼筋加速腐蝕試驗控管不佳,故無法以電阻率與握裹強度試驗結果評估鋼筋鏽蝕程度;另一方面,電容值於鋼筋腐蝕後有大幅上升趨勢且增量與氯含量呈正相關關係,原因為鋼筋表面氧化物結構鬆散與混凝土開裂兩者造成固液交界面面積增加所致。雖然本研究無法以電阻率評估鋼筋鏽蝕程度,但透過電容值仍可區分些微鏽蝕程度差異,其中影像分析可佐證該結果。
In order to evaluate the corrosion degree of rebar, this study made a bonding specimen with a fixed water-cement ratio. By changing the chloride ion content, the bonding specimen had different corrosion degrees, and additionally made pure concrete with the same ratio as the bonding specimen. In this study, the AC impedance method is used. The corresponding electrical parameters in the model are calculated by fitting a specific equivalent circuit, and the changes in the electrical properties of rebar and concrete are discussed separately. After the electrical properties of the specimens were measured, the concrete specimens and the bonding specimens were subjected to compression tests and rebar pull-out tests, respectively. This study additionally used image analysis and evaluation to quantify the corrosion degree of rebar to corroborate the results of the AC impedance method.
The research results show that the content of chloride ions in the concrete material will affect the electrical parameters of the specimen but not the compressive strength of the specimen.
For the part of the bonding specimen, due to the poor control of the accelerated corrosion test of rebar in this study, it is impossible to evaluate the corrosion degree of rebar with the results of resistivity and bonding strength test. On the other hand, the capacitance value has a significant upward trend after the rebar is corroded, and the increase of the value is positively correlated with the chlorine content, which is caused by the loosening of the oxide structure on the surface of the rebar and the cracking of the concrete. Although the resistivity cannot be used to evaluate the corrosion degree of rebar in this study, the difference in the degree of corrosion can still be distinguished by the capacitance value, and the image analysis can support the result.
[1] ASTM International C778-17, Standard Specification for Standard Sand. West Conshohocken, PA, 2017.
[2] ASTM International C109/C109M-20a, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in or 50-mm Cube Specimens). West Conshohocken, PA, 2020.
[3] Balonis, M., Lothenbach, B., Le Saout, G., and Glasser, F.P., Impact of chloride on the mineralogy of hydrated Portland cement systems. Cement and Concrete Research, vol. 40, p. 1009-1022, 2010.
[4] Beushausen, H. and Dittmer, T., The influence of aggregate type on the strength and elastic modulus of high strength concrete. Construction and Building Materials, vol. 74, p. 132-139, 2015.
[5] Chen, C.T., Chang, J.J., and Yeih, W.C., The effects of specimen parameters on the resistivity of concrete. Construction and Building Materials, vol. 71, p. 35-43, 2014.
[6] Christensen, B.J., Coverdale, T., Olson, R.A., Ford, S.J., Garboczi, E.J., Jennings, H.M., and Mason, T.O., Impedance spectroscopy of hydrating cement‐based materials: measurement, interpretation, and application. Journal of the American Ceramic Society, vol. 77, p. 2789-2804, 1994.
[7] Chung, L., Cho, S.H., Kim, J.-H.J., and Yi, S.T., Correction factor suggestion for ACI development length provisions based on flexural testing of RC slabs with various levels of corroded reinforcing bars. Engineering structures, vol. 26, p. 1013-1026, 2004.
[8] Digests, CBD 165 Calcium Chloride in Concrete. 1974.
[9] Du, J., Tang, Z., Li, G., Yang, H., and Li, L., Key inhibitory mechanism of external chloride ions on concrete sulfate attack. Construction and Building Materials, vol. 225, p. 611-619, 2019.
[10] Fan, S., Li, X., and Li, M., The effects of damage and self-healing on impedance spectroscopy of strain-hardening cementitious materials. Cement and Concrete Research, vol. 106, p. 77-90, 2018.
[11] Fang, C., Lundgren, K., Chen, L., and Zhu, C., Corrosion influence on bond in reinforced concrete. Cement and concrete research, vol. 34, p. 2159-2167, 2004.
[12] Gu, P., Xie, P., Beaudoin, J.J., and Brousseau, R., A.C. impedance spectroscopy (I): A new equivalent circuit model for hydrated portland cement paste. Cement and Concrete Research, vol. 22, p. 833-840, 1992.
[13] Gu, P., Xu, Z., Xie, P., and Beaudoin, J., Application of AC impedance techniques in studies of porous cementitious materials:(I): influence of solid phase and pore solution on high frequency resistance. Cement and Concrete Research, vol. 23, p. 531-540, 1993.
[14] Hirao, H., Yamada, K., Takahashi, H., and Zibara, H., Chloride binding of cement estimated by binding isotherms of hydrates. Journal of Advanced Concrete Technology, vol. 3, p. 77-84, 2005.
[15] Instruments, G., Basics of electrochemical impedance spectroscopy, 2007.
[16] Kishar, E.A., Ahmed, D.A., Mohammed, M.R., and Noury, R., Effect of calcium chloride on the hydration characteristics of ground clay bricks cement pastes. Beni-suef university journal of basic and applied sciences, vol. 2, p. 20-30, 2013.
[17] Macdonald, J.R. and Barsoukov, E., Impedance spectroscopy: theory, experiment, and applications, 2018.
[18] Mason, T., Campo, M., Hixson, A., and Woo, L., Impedance spectroscopy of fiber-reinforced cement composites. Cement and Concrete Composites, vol. 24, p. 457-465, 2002.
[19] McCarter, W., Gel formation during early hydration. Cement and Concrete Research, vol. 17, p. 55-64, 1987.
[20] McCarter, W. and Brousseau, R., The AC response of hardened cement paste. Cement and Concrete Research, vol. 20, p. 891-900, 1990.
[21] McCarter, W.J., Starrs, G., Kandasami, S., Jones, R., and Chrisp, M., Electrode configurations for resistivity measurements on concrete. ACI Materials Journal, vol. 106, p. 258, 2009.
[22] Mehta, P.K., Concrete. Structure, properties and materials, 1986.
[23] Oleiwi, H., Wang, Y., Xiang, N., Augusthus Nelson, L., Chen, X., and Shabalin., An experimental study of concrete resistivity and the effects of electrode configuration and current frequency on measurement. Sixth International Conference on Durability of Concrete Structures, United Kingdom, 2018.
[24] Poursaee, A. and Hansson, C., Reinforcing steel passivation in mortar and pore solution. Cement and Concrete Research, vol. 37, p. 1127-1133, 2007.
[25] Qiu, Q., Gu, Z., Xiang, J., Huang, C., Hong, S., Xing, F., and Dong, B., Influence of slag incorporation on electrochemical behavior of carbonated cement. Construction and Building Materials, vol. 147, p. 661-668, 2017.
[26] Sato, T. and Beaudoin, J.J., Coupled AC impedance and thermomechanical analysis of freezing phenomena in cement paste. Materials and structures, vol. 44, p. 405-414, 2011.
[27] Shi, J., Ming, J., Sun, W., and Zhang, Y., Corrosion performance of reinforcing steel in concrete under simultaneous flexural load and chlorides attack. Construction and Building Materials, vol. 149, p. 315-326, 2017.
[28] Song, G., Equivalent circuit model for AC electrochemical impedance spectroscopy of concrete. Cement and concrete research, vol. 30, p. 1723-1730, 2000.
[29] Wenner, F., A method of measuring earth resistivity, 1916.
[30] Xie, P., Gu, P., Xu, Z., and Beaudoin, J., A rationalized AC impedence model for microstructural characterization of hydrating cement systems. Cement and Concrete Research, vol. 23, p. 359-367, 1993.
[31] Ye, C.-Q., Hu, R.-G., Dong, S.-G., Zhang, X.-J., Hou, R.-Q., Du, R.-G., Lin, C.-J., and Pan, J.-S., EIS analysis on chloride-induced corrosion behavior of reinforcement steel in simulated carbonated concrete pore solutions. Journal of Electroanalytical Chemistry, vol. 688, p. 275-281, 2013.
[32] Zhang, M., Chen, J., Lv, Y., Wang, D., and Ye, J., Study on the expansion of concrete under attack of sulfate and sulfate–chloride ions. Construction and Building Materials, vol. 39, p. 26-32, 2013.
[33] Zhang, Z., Hu, J., Ma, Y., Wang, Y., Huang, H., Zhang, Z., Wei, J., Yin, S., and Yu, Q., A state-of-the-art review on Ag/AgCl ion-selective electrode used for non-destructive chloride detection in concrete. Composites Part B: Engineering, vol. 200, p. 108289, 2020.
[34] 王楚弦, 詹凱任, 和侯琮欽, 以表面電極法觀察鋼筋混凝土受高溫後之殘餘握裹. 台灣混凝土學會混凝土工程研討會, 高雄, 2021.
[35] 陳君弢, 吳靖賢, 和陳建忠, 以脈衝電流法量測混凝土中鋼筋腐蝕劣化之研究. 建築學報, vol. 88, p. 1~16, 2014.
[36] 陳佩汝, 以等效電路觀察混凝土材料之粗骨材阻抗效應. 碩士論文, 國立成功大學土木工程研究所, 台南, 2018.
[37] 陳桂清, 港灣RC構造物腐蝕檢測與防蝕原理. 鋼筋混凝土構造物防蝕技術與應用研討會論文集, vol. 1~27, 2002.
[38] 賀天行, 音射與電阻抗法檢測鋼筋混凝土高溫後之殘餘握裹. 碩士論文, 國立成功大學土木工程研究所, 台南, 2016.
[39] 楊仲家, 黃然, 和卓盆揚, 高強度混凝土中鋼筋腐蝕行爲之研究. 防蝕工程, vol. 11, p. 172~178, 1997.
[40] 經濟部標準檢驗局 CNS 11152, 根據鋼筋混凝土握裹力比較混凝土性能試驗法, 台北, 1984.
[41] 經濟部標準檢驗局 CNS14702, 硬固水泥砂漿及混凝土中酸溶性氯離子含量試驗法, 台北, 2002.
[42] 經濟部標準檢驗局 CNS14703, 硬固水泥砂漿及混凝土中水溶性氯離子含量試驗法, 台北, 2002.
[43] 經濟部標準檢驗局 CNS 1232, 混凝土圓柱試體抗壓強度檢驗法, 台北, 2002.
[44] 經濟部標準檢驗局 CNS13465, 新扮混凝土中水容性氯離子含量試驗法, 台北, 2014.
[45]經濟部標準檢驗局 CNS3090, 預拌混凝土, 台北, 2015.
[46] 經濟部標準檢驗局 CNS560, 鋼筋混凝土用鋼筋, 台北, 2018.
[47] 詹凱任, 以力電學非破性檢測法評估RC 構件火害後之鋼筋握裹力. 碩士論文, 國立高雄應用科技大學土木工程研究所, 高雄, 2013.
校內:2027-07-20公開