簡易檢索 / 詳目顯示

研究生: 薛丞延
Hsueh, Cheng-Yen
論文名稱: 正交分頻多工與單載波頻域等化系統之分集技術研究
A Study on the Diversity Techniques of OFDM and SC-FDE Systems
指導教授: 張名先
Chang, Ming-Xian
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 69
中文關鍵詞: 正交分頻多工單載波區塊傳輸頻域等化華氏碼分集技術
外文關鍵詞: OFDM, SC-FDE, Frequency Domain Equalization, Walsh-Hadamard Code, Diversity Techniques
相關次數: 點閱:31下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著無線通訊技術的持續發展,對於高頻譜效率與抗多路徑干擾能力的需求日益提升。正交分頻多工(Orthogonal Frequency Division Multiplexing, OFDM)因具備抗符元間干擾(Inter-Symbol Interference, ISI)與高頻譜利用率,已成為無線通訊系統中廣泛應用的技術。然而,OFDM系統在面對高峰均功率比(Peak-to-Average Power Ratio, PAPR)與對多路徑分集利用效率不足等方面仍存在挑戰。
    為提升OFDM系統於多路徑通道下的效能表現,本文引入Walsh-Hadamard Code進行展頻處理,藉由其正交特性將符元能量分佈於整個頻域中,以獲得額外的頻率分集增益。同時,亦將單載波頻域等化(Single-Carrier Frequency Domain Equalization, SC-FDE)系統作為比較對象,探討兩種系統於不同通道環境下的效能差異。
    本研究首先建立OFDM與SC-FDE系統模型,並設計相對應的等化架構。接著透過改良型Jakes'模型模擬時變多路徑Rayleigh通道,以評估系統在不同路徑數與都卜勒頻率下的效能表現。模擬結果顯示,引入WHC的OFDM系統在多路徑環境下可獲得額外的頻率分集效果,並在中高SNR條件下提升BER表現;SC-FDE系統則展現穩定且優異的分集能力,特別在路徑數增加時更為顯著。
    綜合而言,本研究驗證了WHC於OFDM系統中的應用潛力,並比較了兩種系統架構在多路徑時變通道下的效能差異,藉此探討不同系統架構在多路徑通道下的效能表現與可行性。

    This study investigates the application of Walsh-Hadamard Code (WHC) in Orthogonal Frequency Division Multiplexing (OFDM) systems to enhance frequency diversity under multipath fading. Due to its orthogonality and low computational complexity, WHC spreads symbol energy across the frequency domain. Performance is compared with Single-Carrier Frequency Domain Equalization (SC-FDE) under various channel conditions. System models and equalizers for both OFDM and SC-FDE are constructed, and a modified Jakes' model is used to simulate time-varying Rayleigh fading channels. Simulation results show that WHC-based OFDM improves BER performance under moderate-to-high SNRs, while SC-FDE exhibits stable and superior diversity gains, especially with more channel paths. This study offers insight into the feasibility and performance of both systems in dynamic multipath environments.

    摘要 i Extended Abstract ii 誌謝 viii 目錄 ix 表目錄 xi 圖目錄 xii 第一章 緒論 1 1.1 動機 1 1.2 論文架構 2 第二章 系統模型與頻域等化 3 2.1 正交分頻多工(OFDM)系統簡介 3 2.1.1 OFDM系統模型 3 2.1.2 保護區間(Guard Interval) 5 2.1.3 OFDM接收端訊號 6 2.2 線性預編碼正交分頻多工(LP-OFDM)系統簡介 8 2.2.1 LP-OFDM系統模型 8 2.3 單載波頻域等化(SC-FDE)系統簡介 10 2.3.1 SC-FDE系統模型 10 2.4 等化方法與偵測 12 2.4.1 頻域等化 12 2.4.2 迫零(Zero-Forcing, ZF)等化器 13 2.4.3 最小均方誤差(Minimum Mean-Square Error, MMSE)等化器 14 第三章 通道模型與分集技術 18 3.1 無線通訊通道概述 18 3.1.1 無線通道分類 18 3.1.2 多路徑衰落(Multi-path Fading) 19 3.1.3 時變特性(Time Variance) 23 3.2 通道模型 25 3.2.1 瑞雷衰落(Rayleigh fading)通道 25 3.2.2 改良型Jakes'模型(Enhanced Jakes' Channel Model) 26 3.2.3 模擬所使用的兩路與三路徑通道模型 28 3.2.4 子載波間干擾(Inter-Carrier Interference, ICI) 31 3.3 分集技術(Diversity Techniques) 35 3.3.1 多路徑分集(Multipath diversity) 35 3.3.2 頻率分集(Frequency diversity) 37 3.3.3 華氏碼(Walsh-Hadamard Code) 38 第四章 模擬結果與分析 40 4.1 參數設定 40 4.2 效能分析與觀察結果 41 4.2.1 多路徑通道下等化器效能比較 41 4.2.2 OFDM展頻方式之頻率分集分析 47 4.2.3 快速時變通道下之展頻效能分析 50 第五章 結論與未來展望 51 5.1 結論 51 5.2 未來展望 52 參考文獻 53

    [1] A. Goldsmith, "Challenges in Multicarrier Systems," in Wireless Communications. Cambridge: Cambridge University Press, 2005, pp. 393–395.
    [2] M. X. Chang, "Characterization of single-carrier block transmission under the precoded OFDM architecture," in IEEE 5th International Symposium on Wireless Pervasive Computing 2010, 5-7 May 2010 2010, pp. 381-385, doi: 10.1109/ISWPC.2010.5483764.
    [3] A. Y. Hassan, "A Frequency-Diversity System With Diversity Encoder and OFDM Modulation," IEEE Access, vol. 9, pp. 2805-2818, 2021, doi: 10.1109/ACCESS.2020.3047688.
    [4] W. Zhengdao and G. B. Giannakis, "Linearly precoded or coded OFDM against wireless channel fades?," in 2001 IEEE Third Workshop on Signal Processing Advances in Wireless Communications (SPAWC'01). Workshop Proceedings (Cat. No.01EX471), 20-23 March 2001 2001, pp. 267-270, doi: 10.1109/SPAWC.2001.923899. [Online]. Available: https://ieeexplore.ieee.org/stampPDF/getPDF.jsp?tp=&arnumber=923899&ref=
    [5] L. Yuan-Pei and P. See-May, "BER minimized OFDM systems with channel independent precoders," IEEE Trans. Signal Process., vol. 51, no. 9, pp. 2369-2380, 2003, doi: 10.1109/TSP.2003.815391.
    [6] D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson, "Frequency domain equalization for single-carrier broadband wireless systems," IEEE Commun. Mag., vol. 40, no. 4, pp. 58-66, 2002, doi: 10.1109/35.995852.
    [7] B. Gupta, G. Gupta, and D. S. Saini, "BER performance improvement in OFDM system with ZFE and MMSE equalizers," in 2011 3rd International Conference on Electronics Computer Technology, 8-10 April 2011 2011, vol. 6, pp. 193-197, doi: 10.1109/ICECTECH.2011.5942079. [Online]. Available: https://ieeexplore.ieee.org/stampPDF/getPDF.jsp?tp=&arnumber=5942079&ref=
    [8] F. Pancaldi, G. M. Vitetta, R. Kalbasi, N. Al-Dhahir, M. Uysal, and H. Mheidat, "Single-carrier frequency domain equalization," IEEE Signal Process. Mag., vol. 25, no. 5, pp. 37-56, 2008, doi: 10.1109/MSP.2008.926657.
    [9] Y. S. K. Cho, Jaekwon; Yang, Won Young; Kang, Chung-Gu, "MIMO‑OFDM Wireless Communications with MATLAB." United States: Wiley-IEEE Press, 2010, pp. 1–24.
    [10] W. C. Jakes, Microwave Mobile Communications. New York: Wiley-IEEE Press, 1974.
    [11] L. Yunxin and H. Xiaojing, "The simulation of independent Rayleigh faders," IEEE Trans. Commun., vol. 50, no. 9, pp. 1503-1514, 2002, doi: 10.1109/TCOMM.2002.802562.
    [12] S. M. Alamouti, "A simple transmit diversity technique for wireless communications," IEEE J. Sel. Areas Commun., vol. 16, no. 8, pp. 1451-1458, 1998, doi: 10.1109/49.730453.
    [13] L. Zhiqiang, "Maximum diversity in single-carrier frequency-domain equalization," IEEE Trans. Inf. Theory, vol. 51, no. 8, pp. 2937-2940, 2005, doi: 10.1109/TIT.2005.851766.
    [14] T. Seki, M. Itami, H. Ohta, and K. Itoh, "A study of OFDM system applying frequency diversity," in 11th IEEE International Symposium on Personal Indoor and Mobile Radio Communications. PIMRC 2000. Proceedings (Cat. No.00TH8525), 18-21 Sept. 2000 2000, vol. 2, pp. 1385-1389 vol.2, doi: 10.1109/PIMRC.2000.881645.
    [15] J. Hadamard, "Resolution d’une question relative aux determinants," Bulletin des Sciences Mathématiques, vol. 17, pp. 240–246, 1893.
    [16] J. J. Sylvester, "Thoughts on inverse orthogonal matrices, simultaneous sign successions, and tessellated pavements in two or more colours, with applications to Newton’s rule, ornamental tilework and the theory of numbers," Philosophical Magazine, vol. 34, no. 4, pp. 461–475, 1867.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE