簡易檢索 / 詳目顯示

研究生: 李祐承
Lee, Yu-Cheng
論文名稱: 焚化飛灰與脫硫石膏產製高壓蒸氣養護氣泡混凝土之研究
Utilization of incineration fly ashes and FGD sludges as raw materials in autoclaved aerated concrete production
指導教授: 張祖恩
Chang, Juu-En
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 155
中文關鍵詞: 焚化飛灰脫硫石膏氯鹽硫酸鹽高壓蒸氣養護氣泡混凝土
外文關鍵詞: incineration fly ashes, FGD sludges, chlorides, sulfates, autoclaved aerated concrete
相關次數: 點閱:125下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 焚化飛灰(municipal solid waste incineration (MSWI) fly ash)與脫硫石膏(flue gas desulfurization (FGD) gypsum)皆屬常見之煙道灰,其化學組成富含Ca、Si等元素,應具有作為高壓蒸氣養護氣泡混凝土(autoclaved aerated concrete,AAC)替代原料之潛力。但因含有重金屬及大量氯鹽與硫酸鹽,對於一般水泥系材料存在侵蝕與耐久性之問題,因此其資源化再利用受到許多限制。由於目前少有研究探討氯鹽與硫酸鹽在高壓蒸氣養護後對AAC之影響,若能釐清此鹽類之作用並應用焚化飛灰與脫硫石膏產製AAC,不僅能促進資源循環,並可解決廢棄物處置問題。
    本研究首先透過添加試藥級氯化鈉(NaCl)、氯化鈣(CaCl2•2H2O)與硫酸鈣(CaSO4•2H2O)於AAC原料中,探討氯鹽與硫酸鹽對製品物理性質之影響,再將焚化飛灰與脫硫石膏以調質方式應用於AAC之製作,藉由調整拌合水量,歸納原料最適製作條件,並透過批次與長期溶出試驗瞭解不同替代比例下之製品重金屬與鹽類溶出特性。
    研究結果顯示,NaCl對AAC製品之抗壓強度與密度影響最為顯著,當Cl-含量僅為0.18 wt.%時,抗壓強度大幅下降6 MPa,而含CaCl2•2H2O之試體強度亦降低2.29 MPa,顯示氯鹽對AAC製品密度與抗壓強度有負面影響。而添加CaSO4•2H2O同樣會降低製品抗壓強度,雖影響程度不若CaCl2•2H2O,但可知硫酸鹽亦不利於AAC製品強度發展。藉由性能因子(performance factor,Pf)得知,當氯鹽與硫酸鹽單位含量介於約4×10-5~4×10-4 mole/g-sample時,添加CaCl2•2H2O之試體具有較高Pf值,若含量超過此範圍,則以添加CaSO4•2H2O之Pf值較高,因此可知氯鹽與硫酸鹽對AAC製品性能表現之影響須依其含量加以判定。
    此外,應用焚化飛灰產製AAC係以水固比為0.65 L/kg製品具有較佳之密度與強度表現,亦可提高取代比例至20 wt.%,並符合AAC標準規範。而脫硫石膏產製AAC之適當水固比為0.70 L/kg,雖然密度與強度表現皆不如水固比為0.65 L/kg製品,但於此拌合水量情況下,可使脫硫石膏取代比例達到20 wt.%並符合AAC標準,其資材化效益較佳。
    在溶出試驗中,無論在去離子水、酸雨或醋酸環境下,各製品之批次性溶出試驗之重金屬濃度皆低於偵測極限,並符合「有害事業廢棄物認定標準」與綠建材溶出標準,顯示應用焚化飛灰與脫硫石膏製作AAC應無重金屬溶出疑慮。而桶槽溶出試驗顯示一般元素係以Ca、Si、Na與K有顯著溶出現象,另外荷蘭建築材料指令(building material decree,BMD)所管制之15種重金屬則全數低於偵測極限。
    在氯鹽與硫酸鹽溶出特性方面,由溶出率可知,脫硫石膏製品於批次性試驗中,氯鹽與硫酸鹽溶出皆較焚化飛灰顯著;而桶槽溶出試驗則呈現不同趨勢,焚化飛灰之製品氯鹽係有較高溶出率,硫酸鹽則仍以脫硫石膏之製品溶出現象較明顯。綜合言之,應用煙道灰產製AAC應具有可行性,且製品並無重金屬溶出之虞,但可溶性鹽類之釋出仍須進一步研究。

    Municipal solid waste incineration (MSWI) fly ash and flue gas desulfurization (FGD) gypsum are common residues with rich calcium and silica elements, so that they have the potential to be used in the production of autoclaved aerated concrete (AAC) as an alternative raw material. But they also contain large quantity of chloride and sulfate which may cause corrosion and durability problems to the cementitious products, therefore the reusability was restricted. Due to these reasons, there are three objectives in this study which are: (1) to investigate the effects of chloride and sulfate on the production of AAC, (2) reuse of MSWI fly ash and FGD gypsum to produce AAC, (3) understanding the leachability of heavy metal, chloride and sulfate from AAC products.
    The results show that NaCl has the most serious impact on the density and compressive strength of AAC products. When the chloride content is about 0.18 wt.%, the strength of the sample with NaCl addition reduce 6 MPa and the sample contain CaCl2•2H2O decrease 2.29 MPa as well, which indicate that chloride has the negative effect on AAC products. In addition, the sample with CaSO4•2H2O addition lower the strength of sample as well, it means sulfate does not benefit to the strength development of AAC product.
    On the other hand, the appropriate water to solid ratio is 0.65 L/kg when utilizing MSWI fly ash in AAC production, which could extend the replacement ratio to 20 wt.% with better AAC properties and meet ASTM AAC specification. Besides, the proper water to solid ratio for AAC product made by FGD gypsum is 0.70 L/kg, although the sample properties is worse than the AAC with 0.65 L/kg, it could increase the replacement ratio up to 20 wt.% and meet ASTM standard.
    In terms of leaching test, the leaching concentration of heavy metals of AAC products meet TCLP and green building material limit when the conditions are at DI (deionized) water, acid rain and acetic acid. Besides, according to tank leaching test, excepting Ca, Si, Na and K elements, the leaching concentration of 15 heavy metals of building material decree (BMD) are not detected. Which indicate that there is no doubt that the utilization of MSWI fly ash and FGD gypsum in AAC will not have leaching toxicity of heavy metals.
    The chloride and sulfate leaching properties could be determined by cumulative leaching percentage. The FGD gypsum products perform obvious leaching properties among of batch tests, but different leaching trend was observed in the tank leaching test, that is, the AAC products with MSWI fly ash easily leach out chloride, and FGD gypsum products show clear leaching property of sulfate.

    中文摘要 I 英文摘要 III 誌謝 VI 目 錄 VIII 表目錄 XI 圖目錄 XIII 第一章 前言 1 1-1研究動機與目的 1 1-2研究內容 2 第二章 文獻回顧 4 2-1煙道灰之產出與處理資源化現況 4 2-1-1煙道灰之產出與物化特性 4 2-1-2煙道灰之處置 8 2-1-3煙道灰之再利用現況 13 2-2鹽類對水泥材料特性之影響 16 2-2-1水泥之水化反應 16 2-2-2硫酸鹽對水化反應之影響 19 2-2-3氯鹽對水化反應之影響 20 2-3輕質混凝土之發展與製造 22 2-3-1輕質混凝土之種類與發展 22 2-3-2氣泡混凝土之製造與膨化程序 26 2-3-3氣泡混凝土之養護類型 28 2-4高壓蒸氣養護氣泡混凝土 29 2-4-1蒸氣養護原理與作用 29 2-4-2托伯莫萊土之形成及特性 32 2-4-3原料組成及鹽類對高壓蒸氣養護製品之影響 34 2-4-4材料特性與應用優勢 37 2-5小結 39 第三章 研究材料、設備與方法 40 3-1研究架構與實驗流程 40 3-2研究材料與設備 42 3-2-1原料與煙道灰前處理 42 3-2-2實驗試藥與儀器設備 43 3-3研究分析與方法 45 3-3-1鹽類添加比例設計與煙道灰調質最適配比 45 3-3-2漿體製備與高壓蒸氣養護程序 47 3-3-3分析方法 48 第四章 結果與討論 57 4-1煙道灰之基本特性 57 4-1-1 物化特性 57 4-1-2氯鹽及硫酸鹽含量測定 64 4-1-3 小結 69 4-2 鹽類對AAC特性之影響 71 4-2-1 氯鹽與硫酸鹽對AAC物理性質之影響 71 4-2-2 Tobermorite水化物生成 84 4-2-3 水固比對含氯鹽及硫酸鹽AAC之影響 93 4-2-4 小結 110 4-3 煙道灰應用於AAC產製之探討 112 4-3-1 焚化飛灰產製AAC 112 4-3-2 脫硫石膏產製AAC 122 4-3-3煙道灰產製AAC之溶出特性 132 4-3-4 小結 145 第五章 結論與建議 146 5-1結論 146 5-2建議 148 參考文獻 149

    Alba, N., Gasso, S., Lacorte, T., & Baldasano, J. M. (1997). Characterization of municipal solid waste incineration residues from facilities with different air pollution control systems. Journal of Air & Waste Management Association, 47(11), 1170-1179.
    Anderson, M. (2002). Encouraging prospects for recycling incinerated sewage sludge ash into clay-bases building products. Journal of Chemical Technology and Biotechnology, 77, 352-360.
    Andreola, F., Barbieri, L., Hreglich, S., Lancellotti, I., Morselli, L., Passarini, F., & Vassura, I. (2008). Reuse of incinerator bottom and fly ashes to obtain glassy materials. Journal of Hazardous Materials, 153(3), 1270-1274.
    Baltakys, K. (2009) Influence of gypsum additive on the formation of calcium silicate hydrates in mixtures with C/S = 0.83 or 1.0. Materials Science-Poland, 27(4/1), 1091-1101.
    Bensted, J., & Barnes. P., (2002). Structure and Performance of Cements, second ed., Spon Press, London, UK.
    Beretka, J., De vito, B., Santoro, L., Sherman, N., & Valenti, G. L. (1993). Utilisation of industrial wastes and by-products for the synthesis of special cement. Resources, Conservation and Recycling, 9(3), 179-190.
    Chandler, A. J., Eighmy, T. T., Hartlén, J., Hjelmar, O., Kosson, D. S., Sawell, S. E., van der Sloot, H. A., & Vehlow, J. (1997). Municipal solid waste incinerator residues. Study in Environmental Science 67, Elsevier, Amsterdam, Netherlands.

    Cheng, T.W., & Chen, Y. S. (2004). Characterisation of glass ceramics made from incinerator fly ash. Ceramic International 30, 343-349.
    Crannell, B. S., Eigmy, T. T., Krzanowski, J. E., Eusden, J. D., Shaw, E. L., & Francis, C. (2000). Heavy metal stabilisation in municipal solid waste combustion bottom ash using soluble phosphate. Waste Manage, 20(2-3), 135-148.
    Forestier, L., & Le, L. G. (1988). Characterization of flue gas residue from municipal solid waste combustors. Environmental Science and Technology, 32(15), 2250.
    Gao, X. B., Wang, W., Ye, T. M., Wang, F., & Lan, Y. X. (2008). Utilization of washed MSWI fly ash as partial cement substitute with addition of dithiocarbamic chelate. Journal of Environmental Management, 88(2), 293-299.
    Gines, O., Chimenos, J. M., Vizcarro, A., Formosa, J., & Rosell, J. R. (2009). Combined use of MSWI bottom ash and fly ash as aggregate in concrete formulation: Environmental and mechanical considerations. Journal of Hazardous Materials, 169(1-3), 643-650.
    Hall, M. L., & Livingston, W. R. (2002). Fly ash quality, past present and future, and the effect of ash on the development of novel products. Journal of Chemical Technology and Biotechnology, 77(3), 234–239
    Hauser, A., Eggenberger, U., & Mumenthaler, T. (1999). Fly ash from cellulose industry as secondary raw material in autoclaved aerated concrete. Cement and Concrete Research, 29(3), 297-302.
    Hao, R. X., & Guo, X. Y. (2012). The properties of flue gas desulfurization (FGD) gypsum. Applied Mechanic and Materials, 105-107, 2204-2208.

    Holt, E., & Raivio, P. (2005). Use of gasification residues in autoclaved aerated concrete. Cement and Concrete Research, 35(4), 796-802.
    Isu, N., Ishida, H., & Mitsuda, T. (1995). Influence of quartz particle size on the chemical and mechanical properties of autoclaved aerated concrete (I) tobermorite formation. Cement and Concrete Research, 25(2), 243-248.
    Jing, Z., Jin, F., Hashida, T., Yamasaki, N., & Ishida, E. H. (2008). Influence of additions of coal fly ash and quartz on hydrothermal solidification of blast furnace slag. Cement and Concrete Research, 38(7), 976-982.
    Kurama, H., Topçu, I. B., & Karakurt, C. (2009). Properties of the autoclaved aerated concrete produced from coal bottom ash. Journal of Materials Processing Technology, 209(2), 767-773.
    Levia, C., Garcia Arenas, C., Vilches, L. F., Vale, J., Gimenez, A., Ballesteros, J. C., & Fernandez-Pereira, C. (2010). Use of FGD gypsum in fire resistant panels. Waste Management, 30(6), 1123-1129.
    Lin, K. L. (2006). Feasibility study of using brick made from municipal solid waste incinerator fly ash slag. Journal of Hazardous Materials, 137(3), 1810–1816.
    Mangialardi, T. (2003). Disposal of MSWI fly ash through a combined washing-immobilisation process. Journal of Hazardous Materials, 98(1-3), 225-240.
    Mehta, P. K. (1986). Concrete, Structure, Properties, and Materials. Prentice-Hall, Inc., New Jeresey.
    Mitsuda, T., Sasaki, K., & Ishida, H. (1992). Phase evolution during autoclaving process of aerated concrete. Journal of the American Ceramic Society, 75(7), 1858-1863.
    Mostafa, N. Y. (2005). Influence of air-cooled slag on physicochemical properties of autoclaved aerated concrete. Cement and Concrete Research, 35(7), 1349-1357.
    Pan, J. R., Huang, C., Kuo, J. J., & Lin, S. H. (2008). Recycling MSWI bottom and fly ash as raw materials for Portland cement. Waste Management, 28, 1113-1118.
    Park, Y.J., & Heo, J. (2002). Vitrification of fly ash from municipal solid waste incinerator. Journal of Hazardous Materials, 91(1-3), 83-83.
    Short, A. & Kinniburgh, W. (1976). Lightweight concrete. Formerly Building Research Establishment, U.K.
    Smith, M. R. & Collis, L. (1993). Aggregates: Sand, Gravel and Crushed Rock Aggregates for Construction Purposes. London: Geological Society.
    Taylor, H. F. W. (1997). Cement Chemistry, second ed., Thomas Telford, London, UK.
    Tzouvalas, G., Rantis, G., & Tsimas, S. (2004). Aternative calcium-sulfate-bearing materials as cement retarders: Part II. FGD gypsum. Cement and Concrete Research, 34(11), 2119-2125.
    Wang, K. S., Chiang, K. Y., Lin, K. L., & Sun, C. J. (2008). Effects of a water-extraction process on heavy metal behavior in municipal solid waste incinerator fly ash. Hydrometallurgy, 62(2), 73-81.
    Wieslawa, N. W. (1997). Effect of some inorganic admixtures on the formation and properties of calcium silicate hydrates produced in hydrothermal conditions. Cement and Concrete Research, 27(1), 83-92.

    Wongkeo, W. & Chaipanich, A. (2010). Compressive strength, microstructure and thermal analysis of autoclaved and air cured structural lightweight concrete made with coal bottom ash and silica fume. Materials Science and Engineering A, 527(16-17), 3676-3684
    Yang, Q., Zhang, S., Huang, S., & He, Y. (2000). Effect of ground quartz sand on properties of high-strength concrete in the steam-autoclaved curing. Cement and Concrete Research, 30(12), 1993-1998.
    Yang, J. K., Liu, W. C., Zhang, L. L., & Xiao, B., (2009). Preparation of load-bearing building materials from autoclaved phosphogypsum. Construction and Building Materials, 23(2), 687-693.
    Zhang, Z. W., Qian, J. S., You, C., & Hu, C. H. (2012). Use of circulating fluidized bed combustion fly ash and slag in autoclaved brick. Construction and Building Materials, vol 35, 109-116.
    Zhao, Y. L., Zhang, Y. M., Chen, T. J., Chen, Y. L., & Bao, S. X. (2012). Preparation of high strength autoclaved bricks from hematite tailings. Construction and Building Materials, 28(1), 450-455.
    Zhu, F. F., Takaoka, M., Oshita, K., Kitajima, Y., Inada, Y., Morisawa, S., & Tsuno, H. (2010). Chloride behavior in raw fly ash washing experiments. Journal of Hazardous Materials, 178(1-3), 547-552.
    Zhu, Q., Jiang, L., Chen, Y., Xu, J., & Mo, L. (2012). Effect of chloride salt type on chloride binding behavior of concrete. Construction and Building materials, 37, 512-517.
    中國鋼鐵公司,中鋼企業社會責任報告書,2010。
    王弟文,下水污泥焚化灰製造發泡輕質混凝土之研究,國立中央大學環境工程研究所,碩士論文,2001。
    王曉泳,鋼鐵燒結行業脫硫石膏綜合利用前景,工業安全與環保,第三十三卷第八期,2007。
    王如意,沈曉林,石磊,寶鋼燒結煙氣脫硫石膏特性分析,寶鋼技術,第三期,2008。
    王祁青,石膏基建材與應用,第一版,化學工業出版社,北京市,2008。
    王順元,蔡文博,劉得弘,國內外輕質骨材混凝土之應用與介紹,水利土木科技資訊季刊,第四十五期,2009。
    行政院環境保護署網站, http://www.epa.gov.tw。
    李宗彥,都市垃圾焚化飛灰熔渣粉體對不同型態水泥之卜作嵐反應行為,國立中央大學環境工程研究所,碩士論文,2001。
    吳萬全,排煙脫硫石膏之特性與利用,台灣礦業,第九卷第一期,頁18-36,2001。
    吳清哲,低放射性廢棄物處置場障壁受硫酸鹽侵蝕之劣化模式評估,國立中央大學土木工程研究所,碩士論文,2006。
    林凱隆,都市垃圾焚化熔渣粉體調製環保水泥之卜作嵐反應特性研究,國立中央大學環境工程研究所,博士論文,2002。
    林育鴻,環保水泥製作研究,國立雲林科技大學營建工程所,碩士論文,2004。
    林俊達,煉鋼爐渣蒸壓產製氣泡混凝土之特性研究,國立成功大學環境工程學系,碩士論文,2011。
    高健章,輕質混凝土在國內發展之研究,內政部建築研究所籌備處專題研究計畫成果報告,1993。
    張祖恩,柯明賢,施百鴻,焚化灰渣資源化技術,廢棄物資源再生技術研究成果發表會論文集,2000。
    張明輝,邱三,刁秀華,大型都市垃圾焚化廠混燒處理工業廢棄物現況分析,產業環保工程實務研討會,2002。
    黃兆龍,混凝土性質與行為,第三版,詹氏書局,台北市,2002。
    陳春凉,以奈米金屬氧化物擔體觸媒催化二氧化硫和一氧化氮還原反應之研究,國立成功大學化學工程學系,博士論文,2005。
    許濤,俞秀麗,劉暢,淺談脫硫副產物的處理,山東電力技術,第六期,2006。
    張博荏,污泥及含氯灰渣燒製環保水泥之研究,國立中央大學環境工程研究所,碩士論文,2009。
    陳詣欣,粒徑對煉鋼爐渣產製蒸壓氣泡混凝土特性之影響,國立成功大學環境工程學系,碩士論文,2012。
    楊金鐘,黃靜雯,楊叢印,垃圾焚化飛灰/反應產物合成沸石之資源化研究,廢棄物資源再生技術研究成果發表會論文集,2000。
    楊宗岳,陳豪吉,蔡文博,台灣輕質骨材混凝土之發展與應用,台灣公路工程,第三十六卷第三期,2010。
    鄭欽仁,下水污泥灰發泡混凝土之輕質化與隔熱特性研究,國立中央大學環境工程研究所,碩士論文,2002。
    顏聰,輕質骨材混凝土之力學性質,輕質骨材混凝土會刊,創刊號,第27~41頁,2004。
    龔人俠,水泥化學概論,台灣水泥工業同業公會,1977。

    下載圖示 校內:2015-07-05公開
    校外:2018-07-05公開
    QR CODE