簡易檢索 / 詳目顯示

研究生: 王柏盛
Wang, Po-Sheng
論文名稱: 單層石墨烯的奈米光學模擬
Nano plasmonics in single layered graphene
指導教授: 張世慧
Chang, Shih-Hui
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 58
中文關鍵詞: 石墨烯Compact FDTD石墨烯波導
外文關鍵詞: graphene, Compact FDTD, graphene waveguide
相關次數: 點閱:126下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 單層石墨烯(single layered graphene)是原子厚度等級的材料,其晶格結構呈蜂巢狀,由碳原子以sp2混成軌域緊密排列呈平面六角形,屬於零能隙半導體或稱類金屬(semi-metal),不同於矽半導體需要三、五族元素摻雜才能改變電性,單層石墨烯被外加電場或磁場,就能調變電性,因此有研究團隊製作石墨烯電子元件,除了石墨烯DC導電度可被外加電場調控,光源頻率變化亦會造成石墨烯AC導電度改變。有研究團隊用紅外線光源(infrared microscopy)得到石墨烯的實虛部導電度隨著光源頻率變化。有研究團隊利用TM模態表面電漿波只能傳遞在石墨烯虛部導電度是負值區域,模擬出石墨烯奈米帶的效果,引起我們注意石墨烯表面電漿,於是本文嘗試模擬單層石墨烯波導(single layered graphene waveguide)。
    我們參考文獻方法去描述單層石墨烯的二維導電度,然後考慮其電流項於馬克士威-安培定律,橫磁模態(Transverse Magnetic Mode)波傳遞在未加電壓的單層石墨烯有97.74%穿透、2.246%吸收與0.014%反射;而加電壓的單層石墨烯其吸收係數與波長有關,當外加電壓為0.6eV 時在1.2m有最大吸收值6.633%。我們給定初始傳播常數,利用Compact FDTD計算單層石墨烯波導管的時域電場,藉由時域電場的富立葉轉換頻譜去找出對應頻率,因此獲得色散曲線。我們得知石墨烯intraband導電度對應的介電係數有金屬之Drude模型,所以模擬石墨烯intraband波導管,結果顯示厚度愈薄的石墨烯intraband波導管,對稱與反對稱模態的色散曲線愈分開,對稱模態色散曲線愈靠近傳播常數軸,也就是說,等效波長縮短,此特性有潛力應用於高解析度光學顯微技術。

    Single layered graphene is an atomically thick material with sp2 hybridized carbon atoms tightly packed into a 2D honeycomb lattice, and behaves as a zero-gap semiconductor or semi-metal. The electronic properties of single layered graphene can be controlled by externally applied voltage or magnetic field. This tunability distinguishes graphene from silicon semiconductors and noble metals. Infrared microscopy measurement shows that the real part and imaginary part of the AC conductivity in the single layered graphene exhibits plasmonics behavior near the infrared regime. The transverse magnetic (TM) mode surface plasmonic wave is allowed to propagate in graphene nanoribbons. Those recent interesting findings motivate us to simulate the single layered graphene waveguide.
    2D conductivity of a single layered graphene can be obtained from Kubo formula and applied to Maxwell-Ampere’s law with auxiliary differential equation method in finite-difference time-domain(FDTD) method. When no electrical gating is applied, single layered graphene shows 2.246% absorption. However, when electrical gating voltage is applied, the absorption coefficient of a single layered graphene varies with frequency. Using Compact FDTD, the dispersion relations of single layered graphene waveguide were obtained. When the thickness of the graphene plasmonic waveguide varies, the thinner the single layered graphene waveguide, the further splitting occurs for the waveguide dispersion curve between the symmetric and the anti-symmetric modes. The dispersion curve for symmetric mode is closer to the propagation axis, in other words, the effective wavelength is smaller. This property has potential applications for high resolution optical microscopy technology.

    口試委員審定書………………………………………………………………Ι 中文摘要…………………………………………………………………………ΙΙ 英文摘要………………………………………………………………………ΙΙΙ 致謝…………………………………………………………………………………ΙV 中文目錄…………………………………………………………………………VΙ 圖目錄……………………………………………………………………………VΙΙ 第一章 緒論…………………………………………………………………1 1-1研究目的與發展………………………………………………………1 1-2論文架構……………………………………………………………………8 第二章 石墨烯介紹………………………………………………………9 2-1石墨烯的發展……………………………………………………………9 2-2石墨烯的π電子能帶結構………………………………………15 2-3石墨烯π電子的躍遷系統………………………………………20 第三章 模擬方法…………………………………………………………22 3-1時域有限差分演算法………………………………………………22 3-2CompactFDTD algorithm……………………………26 3-3完美匹配層………………………………………………………………30 3-4單層石墨烯電磁模擬……………………………………………34 3-5FDTD與Compact FDTD數值計算程序…………38 第四章 結果與討論……………………………………………………42 4-1石墨烯導電度與介電係數……………………………………42 4-2石墨烯的穿透與吸收……………………………………………47 4-3石墨烯波導色散與表面電漿………………………………49 第五章 結論………………………………………………………………52 第六章 未來展望………………………………………………………53 參考文獻…………………………………………………………………………54

    [1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric field effect in atomically thin carbon films”, Science, 306, p666 (2004).
    [2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene”, Nature, 438, p197 (2005).
    [3] P. Avouris, Z.Chen, V. Perebeinos, “Carbon-based electronics”, Nature Nanotechnology, 2, p605 (2007).
    [4] Y. Zhang, Y. W. Tan, H. L. Stormer, P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene”, Nature, 438, p201 (2005).
    [5] G. W. Semenoff, “Condensed-Matter Simulation of a Three-Dimensional Anomaly”, Phys.Rev.Lett., 53, p2449 (1984).
    [6] D. P. DiVincenzo, E. J. Mele, “Self-consistent effective-mass theory for intralayer screening in graphite intercalation compounds”, Phys.Rev.B, 29, p1685 (1984).
    [7] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, “The electronic properties of graphene”, Rev. Mod. Phys., 81, p109 (2009).
    [8] Z. Jiang, E. A. Henriksen, L. C.Tung, Y. J. Wang, M. E. Schwartz, M. Y. Han, P. Kim, H. L. Stormer, “Infrared Spectroscopy of Landau Levels of Graphene”, Phys.Rev.Lett., 98, p197403 (2007).
    [9] K. S. Novoselov, Z. Jiang, Y. Zhang, V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, A. K. Geim, “Room-Temperature Quantum Hall Effect in Graphene”, Science, 315, p1379 (2007).
    [10] Z. Jianga, Y. Zhanga, Y. W. Tana, H. L. Stormera, P. Kima, “Quantum Hall effect in graphene”, Solid State Comm., 143, p14 (2007).
    [11] A. K. Geim, K. S. Novoselov, “The rise of graphene”, Nat. Mater., 6, p183 (2007)
    [12] G. W. Hanson et al, “Dyadic Green’s Functions for an Anisotropic, Non-Local Model of Biased Graphene”, IEEEJ.Mater.Chem., 21, p3335 (2008).
    [13] V. P. Gusynin, S. G. Sharapov, J. P. Carbotte, “Magneto-optical conductivity in graphene”, J.Phys.Condens.Matter, 19, p026222 (2007).
    [14] A. Bostwick, E. Rotenberg et al, “The interaction of quasi-particles in graphene with chemical dopants”, New Journal of Physics, 12, p125014 (2010).
    [15] H. Liu, Y. Liu, D. Zhu, “Chemical doping of graphene”, J. Mater.Chem., 21, p3335 (2011).
    [16] I. Gierz, C. Riedl, U. Starke, C. R. Ast, K. Kern, “Atomic Hole Doping of Graphene”, Nano Lett., 8, p4603 (2008).
    [17] X. Du, I. Skachko, A. Barker, E. Y. Andrei, “Approaching ballistic transport in suspended graphene”, Nat.Nanotechnol., 3, p491 (2008).
    [18] M. C. Lemme et al, “A graphene field-effect Device”, IEEE Electron Dev. Lett., 28, p282 (2007).
    [19] Y. M. Lin, K. A. Jenkins, A. Valdes-Garcia, J. P. Small, D. B. Farmer, P. Avouris, “Operation of graphene transistors at gigahertz frequencies”, Nano Lett., 9, p422 (2008).
    [20] J. Moon, D. Curtis, M. Hu, D. Wong, C. McGuire, P. Campbell, G. Jernigan, J. Tedesco, B. VanMil, R. Myers-Ward, “Epitaxial-graphene RF field-effect transistors on Si-face 6H-SiC substrates”, Electron Device Letters, IEEE, 30, p650 (2009).
    [21] L. Liao, Y. C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K. L. Wang, Y. Huang, X. Duan, “High-speed graphene transistors with a self-aligned nanowire gate”, Nature, 467, p305 (2010).
    [22] Y. M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H. Y. Chiu, A. Grill, P. Avouris, “100-GHz transistors from wafer-scale epitaxial graphene”, Science, 327, p662 (2010).
    [23] Y. Wu, Y. Lin, A. A. Bol, K. A. Jenkins, F. Xia, D. B. Farmer, Y. Zhu, P. Avouris, “High-frequency, scaled graphene transistors on diamond-like carbon”, Nature, 472, p74 (2011).
    [24] C. Berger et al, “Electronic confinement and coherence in patterned epitaxial graphene”, Science, 312, p1191 (2006).
    [25] M. Y. Han, B. Özyilmaz, Y. Zhang, P. Kim, “Energy band-gap engineering of graphene nanoribbons”, Phys. Rev. Lett., 98, p206805 (2007).
    [26] L. Jiao, X. Wang, G. Diankov, H. Wang, H. Dai, “Facile synthesis of high-quality graphene nanoribbons”, Nat. Nanotechnology, 6, p321 (2010).
    [27] V. P. Gusynin, S. G. Sharapov, “Transport of Dirac quasiparticles in graphene:Hall and optical conductivities”, Phys.Rev.B, 73, p245411 (2006).
    [28] Z. Q. Li, P. Kim, H. L. Stormer, D. N. Basov et al, “Dirac charge dynamics in graphene by infrared spectroscopy”, Nat. Phys., 4, p532 (2008).

    [29] O.Vafek, “Thermoplasma Polariton within Scaling Theory of Single-Layer Graphene”, Phys.Rev.Lett., 97, p266406 (2006).
    [30] G.W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene”, J. Appl. Phys., 103, p064302 (2008).
    [31] M. Jablan, H. Buljan, M. Soljačić, “Plasmonics in graphene at infrared frequencies”, Phy. Rev. B, 80, p245435 (2009).
    [32] L. Ju, F. Wang et al, “Graphene plasmonics for tunable terahertz Metamaterials”, Nat. Nanotechnology, 6, p630 (2011).
    [33] M. Fujita, K. Wakabayashi, K. Nakada, K. Kusakabe, “Peculiar Localized State at Zigzag Graphite Edge”, J. of the Phys.Society of Japan, 65, p1920 (1996).
    [34] L. Brey, H. A. Fertig, “Electronic states of graphene nanoribbons studied with the Dirac equation”, Phys.RevB, 73, p235411 (2006).
    [35] A.Vakil, N. Engheta, “Transformation Optics Using Graphene”, Science, 332, p1291 (2011).
    [36] P. R. Wallace, “The band theory of graphite”, Phys. Rev.Lett., 71, p622 (1947).
    [37] R. E. Peierls, “Quelques proprietes typiques des corpses solides”, Ann. I. H. Poincare 5, p177 (1935).
    [38] L. D. Landau, “Zur Theorie der phasenumwandlungen II”, Phys. Z. Sowjetunion 11, p26 (1937).
    [39] L. D. Landau, E. M. Statistical Physics, Pergamon Oxford (1980). See Part I.
    [40] J. A. Venables, G .D. T Spiller, M. Hanbucken, “Nucleation and growth of thin films”, Rep. Prog. Phys. 47, p399 (1984).
    [41] A. E. Karu, M. Beer, “Pyrolytic Formation of Highly Crystalline Graphite Films”, J.Appl.Phys., 37, p2179 (1966).
    [42] T. A. Land, T. Michely, R. J. Behm, J. C. Hemminger, G. Comsa, “STM investigation of single layer graphite structures produced on Pt( 111) by hydrocarbon decomposition”, Surfave Sciencev, 264, p261 (1992).
    [43] I. Forbeaux, J. M. Themlin, J. M. Debever, “Heteroepitaxial graphite on 6H-SiC(0001): Interface formation through conduction-band electronic structure”, Phys.Rev.B, 58, p16396 (1998).
    [44] H. Shioyama, “Cleavage of graphite to graphene”, J.Mater. Sci, Lett., 20, p499 (2001).
    [45] L. M. Viculis, J. J. Mack, R. B. Kaner, “A Chemical Route to Carbon Nanoscrolls”, Science, 299, p1361 (2003).
    [46] A. Charrier, A. Coati, T. Argunova, F. Thibaudau, Y. Garreau et al, “Solid-state decomposition of silicon carbide for growing ultra-thin heteroepitaxial graphite films”, J. Appl.Phys., 92, p2479 (2002).
    [47] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Supporting Online Material”, Science, 306, p666 (2004).
    [48] A. H. Castro Neto, F. Guinea, N. M. R. Peres, A. K. Geim, K. S. Novoselov, “The electronic properties of graphene”, Rev. Mod. Phys., 81, p109 (2009).
    [49] R. Saito, G. Dresselhaus, M. S. Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial College Press (1998). See chapter 2 “Tight Binding Calculation of Molecules and Solids”.
    [50] S. Reich, C. Thomsen, J. Maultzsch, Carbon Nanotubes, Wiley-Vch (2004). See chapter 3 “Electronic Properties of Carbon Nanotubes”.
    [51] S. Gasiorowics, Quantum Physics, Wiley&Sons, Inc (2003). See Chapter2 “Eigenvalues, Eigenfunctions and the Expansion Postulate” and Chapter 6 “Operators back to the Schrodinger equation”.
    [52] A. Taflove, Computational Electrodynamics The Finite-Difference Time-Domain Method, 3rd, Artech House (2005).
    [53] S. Xiao, R. Vahldieck, H. Jin, “Full wave of guided wave structures using a novel 2D FDTD”, IEEE Microw Guided Wave Lett., 2, p165 (1992).
    [54] A. Asi, L. Shafai, “Dispersion Analysis of Anisotropic inhomogeneous Waveguides Using Compact 2D-FDTD”, Elect.lett., 28, p1451 (1992).
    [55] M. Qiu, “Analysis of guided modes in photonic crystal fibers using the FDTD method”, Microw optic. Techmol. lett., 30, p327 (2001).
    [56] A. C. Cangellaris et al, “Numerical Stability and Numerical Dispersion of a Compact 2D-FDTD Method Used for the Dispersion Analysis of Waveguides”, IEEE Microwave and guided wave lett., 3, p3 (1993).
    [57] G. D. Bouzianas et al, “Optimal Modeling of Infinite Graphene Sheets via a Class of Generalized FDTD Schemes”, IEEE Transactions on magnetics, 48, p379 (2012).
    [58] A. Mock, “Pade approximan spectral fit for FDTD simulation of graphene in the nearinfrared”, Optical materials express, 2, p771 (2012).
    [59] U. S. Inan, A. S. Inan, Electromagnetic Waves, Prentice-Hall (2000). See chapter 4 “Parallel-Plate and Dielectric Slab Waveguides”.
    [60] D. K. Cheng, Field and Wave Electromagnetics, Addison Wesley (1992).
    [61] J. M. Pitarke, V. M. Silkin, E. V. Chulkov, P. M. Echenique, “Theory of surface plasmons and surface plasmon polaritons”, Rep. Prog. Phys, 70, p1 (2007).
    [62] K. S. Novoselov, A. K. Geim et al, “Supporting Online Material”, Science, 320, p1308 (2008).
    [63] K. S. Novoselov, A. K. Geim et al, “Fine Structure Constant Defines Visual Transparency of Graphene”, Science, 320, p1308 (2008).
    [64] A. Yu. Nikitin, F. Guinea, L. Martin-Moreno, “Resonant plasmonic effects in period graphene antidot arrays”, Appl.Phys.Lett., 101, p151119 (2012).
    [65] A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, L. Martin-Moreno, “Surface plasmon enhanced absoprtion and suppressed transmission in periodic arrays of graphene ribbons”, Phys.Rev.B, 85, p081405 (2012).
    [66] D. R. Andersen,“Graphene-based long-wave infrared TM surface plasmon modulator”, J. Opt. Soc. Am. B, 27, p818 (2010).
    [67] Z. Lu, W. Zhao, “Nanoscale electro-optic modulators based on graphene-slot waveguides”, J. Opt. Soc. Am. B, 29, p1490 (2012).
    [68] S. J. Koester, H. Li, M. Li, “Switching energy limits of waveguide-coupled graphene-on-graphene optical modulators”, Optics Express, 20, p20330 (2012).
    [69] K. P. Loh et al, “Broadband graphene polarizer”, Nat.Photonics, 5, p411 (2011).

    下載圖示 校內:立即公開
    校外:2015-07-22公開
    QR CODE