| 研究生: |
葛宇庭 Ge, Yu-Ting |
|---|---|
| 論文名稱: |
雙特異性去磷酸酶-2及共激活因子相關的精氨酸甲基轉移酶-1對大腸直腸癌調控之機制探討 Regulation of coactivator-associated arginine methyltransferase-1 by dual specificity phosphatase-2 in colorectal cancer |
| 指導教授: |
蔡少正
Tsai, Shaw-Jenq |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生理學研究所 Department of Physiology |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 共激活因子相關的精氨酸甲基轉移酶-1 、雙特異性磷酸酶2 、大腸直腸癌 |
| 外文關鍵詞: | CARM1, DUSP2, Colorectal cancer |
| 相關次數: | 點閱:102 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
大腸直腸癌目前仍是全球最常見的惡性疾病,也是癌症致死率排名前三的主要癌症之一。儘管對於大腸直腸癌的發病機制已經投入了很多的努力與研究,但是該過程中所涉及的確切分子機制仍然有很大程度上是未知的。共激活因子相關的精氨酸甲基轉移酶-1(CARM1)是屬於蛋白質精氨酸甲基轉移酶的家族成員,主要的功能是催化位於蛋白質底物中的精氨酸(Arg)使其造成不對稱甲基化的結構。而根據先前已發表的文獻,CARM1可以涉及到多個重要的生物過程中,例如基因調控,細胞週期進展和DNA損傷反應。然而,CARM1的相關作用機制在癌症的中仍然還是不清楚的。因此,為了探究CARM1的表達是否有助於大腸直腸癌的發展,首先,我們收集了公共資料庫裡未被分析的大腸直腸癌病人的原始數據並且分析了CARM1的表達量,而我們的結果顯示,CARM1的表達量在大腸直腸癌中是增加的情形並且同時也發現高表達CARM1的病人有較低存活率。而在我們自己收取的大腸直腸癌病人樣本中也看到相似的結果。接著,為了證明CARM1的表現量是否會影響大腸直腸癌細胞的功能,我們通過小分子干擾核糖核酸(siRNA)在大腸直腸癌細胞系中降低了CARM1表達。從細胞增生以及細胞爬行的實驗結果中證實了,當CARM1的表達量被抑制的時候,確實會降低細胞增生以及爬行的能力。而為了進一步去研究造成CARM1在大腸直腸癌中高度表達的機制,我們利用生物資訊分析的方法,鑑定了位於CARM1啟動子區域中具有早期生長反應蛋白(EGR-1)的結合位點。由於在過去實驗室的發表中已證實了EGR-1的表達受到了雙特異性磷酸酶2(DUSP2)的負調控影響,因此,我們假設當DUSP2不表達的時候,可能藉由通過EGR-1來引起CARM1在大腸直腸癌中過度表達的情形。為了測試這個想法,我們利用小分子干擾核糖核酸(siRNA)將DSUP2在大腸直腸癌細胞系中降低後發現,抑制DUSP2確實引起CARM1表達量的增加。在DUSP2條件性剔除小鼠的腸組織中也觀察到類似的結果。綜合以上的結果,我們發現在大腸直腸癌中DUSP2的缺失導致CARM1過表達,進而促進大腸直腸癌的病理過程的發展。
Colorectal cancer is a common malignant disease and the third leading cause of cancer death in the world. Although intensive efforts have been devoted to investigate the pathogenesis of colorectal cancer, the exact molecular mechanisms involved in the process remain largely unknown. Coactivator-associated arginine methyltransferase 1 (CARM1), a member of protein arginine methyltransferase family, catalyzes asymmetric methylation of the arginine (Arg) residues in protein substrates. According to the published literatures, CARM1 involves in multiple important biological processes, such us gene regulation, cell-cycle progression, and the DNA damage response. However, the mechanism of CARM1 action remains obscure in cancer. To characterize whether the expression of CARM1 contributes to the development of colorectal cancer, we first evaluated the level of CARM1 in the colorectal cancer specimens from the public datasets. Our data demonstrated that CARM1 expression was up regulated in colorectal cancer and negatively associated with poor survival. Similar results were also observed in our own colorectal cancer samples. Next, to demonstrate whether the CARM1 expression affects cellular function, CARM1 was knocked down by siRNA in colorectal cancer cell line and its cellular functions were evaluated. Cell proliferation and migration assays demonstrated that knockdown of CARM1 significantly repressed cell proliferative and migratory abilities. To further investigate the underlying mechanism causing CARM1 overexpression in colorectal cancer, we identified EGR-1 binding sites located in the CARM1 promoter region through bioinformatics analysis. Since our previous data demonstrated that EGR-1expression was negatively regulated by Dual Specificity Phosphatase 2 (DUSP2), we thus hypothesized that loss of DUSP2 may cause CARM1 overexpression via EGR-1-mediated gene transcription. To test the idea, DUSP2 was knocked down by siRNA in colorectal cancer cells. Knockdown of DUSP2 indeed caused an increase of CARM1 expression. Similar results were observed in the intestine tissues from DUSP2 conditional knockout mice and supported by the clinical specimen analysis. In summary, we have found that loss of DUSP2 results in CARM1 overexpression, which promotes pathological processes of colorectal cancer.
1 Granados-Romero, J.J., Valderrama-Treviño, A.I., Contreras-Flores, E.H., Barrera-Mera, B., Herrera Enríquez, M., Uriarte-Ruíz, K., Ceballos-Villalba, J.C., Estrada-Mata, A.G., Alvarado Rodríguez, C., and Arauz-Peña, G.: ‘Colorectal cancer: a review’, International Journal of Research in Medical Sciences, 2017, 5, (11)
2 Health Promotion Administration, M.o.H.a.W.: ‘2007 Administrative Plan (Draft) Bureau of Health Promotion, DOH, Executive Yuan’, 2016
3 Jasperson, K.W., Tuohy, T.M., Neklason, D.W., and Burt, R.W.: ‘Hereditary and familial colon cancer’, Gastroenterology, 2010, 138, (6), pp. 2044-2058
4 Chang, L., and Karin, M.: ‘Mammalian MAP kinase signalling cascades’, Nature, 2001, 410, (6824), pp. 37-40
5 Lewis, T.S., Shapiro, P.S., and Ahn, N.G.: ‘Signal transduction through MAP kinase cascades’, Adv Cancer Res, 1998, 74, pp. 49-139
6 Fang, J.Y., and Richardson, B.C.: ‘The MAPK signalling pathways and colorectal cancer’, Lancet Oncol, 2005, 6, (5), pp. 322-327
7 Camps, M., Nichols, A., and Arkinstall, S.: ‘Dual specificity phosphatases: a gene family for control of MAP kinase function’, Faseb j, 2000, 14, (1), pp. 6-16
8 Theodosiou, A., and Ashworth, A.: ‘MAP kinase phosphatases’, Genome Biol, 2002, 3, (7), pp. Reviews3009
9 Lin, S.C., Chien, C.W., Lee, J.C., Yeh, Y.C., Hsu, K.F., Lai, Y.Y., Lin, S.C., and Tsai, S.J.: ‘Suppression of dual-specificity phosphatase-2 by hypoxia increases chemoresistance and malignancy in human cancer cells’, J Clin Invest, 2011, 121, (5), pp. 1905-1916
10 Rohan, P.J., Davis, P., Moskaluk, C.A., Kearns, M., Krutzsch, H., Siebenlist, U., and Kelly, K.: ‘PAC-1: a mitogen-induced nuclear protein tyrosine phosphatase’, Science, 1993, 259, (5102), pp. 1763-1766
11 Owens, D.M., and Keyse, S.M.: ‘Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases’, Oncogene, 2007, 26, (22), pp. 3203-3213
12 Ward, Y., Gupta, S., Jensen, P., Wartmann, M., Davis, R.J., and Kelly, K.: ‘Control of MAP kinase activation by the mitogen-induced threonine/tyrosine phosphatase PAC1’, Nature, 1994, 367, (6464), pp. 651-654
13 Yoon, S., and Seger, R.: ‘The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions’, Growth Factors, 2006, 24, (1), pp. 21-44
14 Zhang, Q., Muller, M., Chen, C.H., Zeng, L., Farooq, A., and Zhou, M.M.: ‘New insights into the catalytic activation of the MAPK phosphatase PAC-1 induced by its substrate MAPK ERK2 binding’, J Mol Biol, 2005, 354, (4), pp. 777-788
15 Keyse, S.M.: ‘Dual-specificity MAP kinase phosphatases (MKPs) and cancer’, Cancer Metastasis Rev, 2008, 27, (2), pp. 253-261
16 Bermudez, O., Pages, G., and Gimond, C.: ‘The dual-specificity MAP kinase phosphatases: critical roles in development and cancer’, Am J Physiol Cell Physiol, 2010, 299, (2), pp. C189-202
17 Yin, Y., Liu, Y.X., Jin, Y.J., Hall, E.J., and Barrett, J.C.: ‘PAC1 phosphatase is a transcription target of p53 in signalling apoptosis and growth suppression’, Nature, 2003, 422, (6931), pp. 527-531
18 Wu, J., Jin, Y.J., Calaf, G.M., Huang, W.L., and Yin, Y.: ‘PAC1 is a direct transcription target of E2F-1 in apoptotic signaling’, Oncogene, 2007, 26, (45), pp. 6526-6535
19 Sano, H., Wada, S., Eguchi, H., Osaki, A., Saeki, T., and Nishiyama, M.: ‘Quantitative prediction of tumor response to neoadjuvant chemotherapy in breast cancer: novel marker genes and prediction model using the expression levels’, Breast Cancer, 2012, 19, (1), pp. 37-45
20 Vaiopoulos, A.G., Athanasoula, K., and Papavassiliou, A.G.: ‘Epigenetic modifications in colorectal cancer: molecular insights and therapeutic challenges’, Biochim Biophys Acta, 2014, 1842, (7), pp. 971-980
21 Esteller, M.: ‘Epigenetic gene silencing in cancer: the DNA hypermethylome’, Hum Mol Genet, 2007, 16 Spec No 1, pp. R50-59
22 Shah, M.A., Denton, E.L., Arrowsmith, C.H., Lupien, M., and Schapira, M.: ‘A global assessment of cancer genomic alterations in epigenetic mechanisms’, Epigenetics Chromatin, 2014, 7, (1), pp. 29
23 Lu, C., Jain, S.U., Hoelper, D., Bechet, D., Molden, R.C., Ran, L., Murphy, D., Venneti, S., Hameed, M., Pawel, B.R., Wunder, J.S., Dickson, B.C., Lundgren, S.M., Jani, K.S., De Jay, N., Papillon-Cavanagh, S., Andrulis, I.L., Sawyer, S.L., Grynspan, D., Turcotte, R.E., Nadaf, J., Fahiminiyah, S., Muir, T.W., Majewski, J., Thompson, C.B., Chi, P., Garcia, B.A., Allis, C.D., Jabado, N., and Lewis, P.W.: ‘Histone H3K36 mutations promote sarcomagenesis through altered histone methylation landscape’, Science, 2016, 352, (6287), pp. 844-849
24 Huang, T., Lin, C., Zhong, L.L., Zhao, L., Zhang, G., Lu, A., Wu, J., and Bian, Z.: ‘Targeting histone methylation for colorectal cancer’, Therap Adv Gastroenterol, 2017, 10, (1), pp. 114-131
25 Bedford, M.T., and Clarke, S.G.: ‘Protein arginine methylation in mammals: who, what, and why’, Mol Cell, 2009, 33, (1), pp. 1-13
26 Gary, J.D., and Clarke, S.: ‘RNA and protein interactions modulated by protein arginine methylation’, Prog Nucleic Acid Res Mol Biol, 1998, 61, pp. 65-131
27 Bedford, M.T., and Richard, S.: ‘Arginine methylation an emerging regulator of protein function’, Mol Cell, 2005, 18, (3), pp. 263-272
28 Chen, D., Ma, H., Hong, H., Koh, S.S., Huang, S.M., Schurter, B.T., Aswad, D.W., and Stallcup, M.R.: ‘Regulation of transcription by a protein methyltransferase’, Science, 1999, 284, (5423), pp. 2174-2177
29 Teyssier, C., Chen, D., and Stallcup, M.R.: ‘Requirement for multiple domains of the protein arginine methyltransferase CARM1 in its transcriptional coactivator function’, J Biol Chem, 2002, 277, (48), pp. 46066-46072
30 Paik, W.K., and Kim, S.: ‘Enzymatic methylation of protein fractions from calf thymus nuclei’, Biochem Biophys Res Commun, 1967, 29, (1), pp. 14-20
31 McBride, A.E., and Silver, P.A.: ‘State of the arg: protein methylation at arginine comes of age’, Cell, 2001, 106, (1), pp. 5-8
32 Covic, M., Hassa, P.O., Saccani, S., Buerki, C., Meier, N.I., Lombardi, C., Imhof, R., Bedford, M.T., Natoli, G., and Hottiger, M.O.: ‘Arginine methyltransferase CARM1 is a promoter-specific regulator of NF-kappaB-dependent gene expression’, Embo j, 2005, 24, (1), pp. 85-96
33 Zhao, H.Y., Zhang, Y.J., Dai, H., Zhang, Y., and Shen, Y.F.: ‘CARM1 mediates modulation of Sox2’, PLoS One, 2011, 6, (10), pp. e27026
34 Kim, D., Lee, J., Cheng, D., Li, J., Carter, C., Richie, E., and Bedford, M.T.: ‘Enzymatic activity is required for the in vivo functions of CARM1’, J Biol Chem, 2010, 285, (2), pp. 1147-1152
35 Baldwin, R.M., Morettin, A., and Cote, J.: ‘Role of PRMTs in cancer: Could minor isoforms be leaving a mark?’, World J Biol Chem, 2014, 5, (2), pp. 115-129
36 Kim, Y.R., Lee, B.K., Park, R.Y., Nguyen, N.T., Bae, J.A., Kwon, D.D., and Jung, C.: ‘Differential CARM1 expression in prostate and colorectal cancers’, BMC Cancer, 2010, 10, pp. 197
37 Hong, H., Kao, C., Jeng, M.H., Eble, J.N., Koch, M.O., Gardner, T.A., Zhang, S., Li, L., Pan, C.X., Hu, Z., MacLennan, G.T., and Cheng, L.: ‘Aberrant expression of CARM1, a transcriptional coactivator of androgen receptor, in the development of prostate carcinoma and androgen-independent status’, Cancer, 2004, 101, (1), pp. 83-89
38 Wang, X., and Roberts, C.W.: ‘CARMA: CARM1 methylation of SWI/SNF in breast cancer’, Cancer Cell, 2014, 25, (1), pp. 3-4
39 Wang, Y.P., Zhou, W., Wang, J., Huang, X., Zuo, Y., Wang, T.S., Gao, X., Xu, Y.Y., Zou, S.W., Liu, Y.B., Cheng, J.K., and Lei, Q.Y.: ‘Arginine Methylation of MDH1 by CARM1 Inhibits Glutamine Metabolism and Suppresses Pancreatic Cancer’, Mol Cell, 2016, 64, (4), pp. 673-687
40 Copeland, R.A., Solomon, M.E., and Richon, V.M.: ‘Protein methyltransferases as a target class for drug discovery’, Nat Rev Drug Discov, 2009, 8, (9), pp. 724-732
41 Crea, F., Nobili, S., Paolicchi, E., Perrone, G., Napoli, C., Landini, I., Danesi, R., and Mini, E.: ‘Epigenetics and chemoresistance in colorectal cancer: an opportunity for treatment tailoring and novel therapeutic strategies’, Drug Resist Updat, 2011, 14, (6), pp. 280-296
42 An, W., Kim, J., and Roeder, R.G.: ‘Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53’, Cell, 2004, 117, (6), pp. 735-748
43 El Messaoudi, S., Fabbrizio, E., Rodriguez, C., Chuchana, P., Fauquier, L., Cheng, D., Theillet, C., Vandel, L., Bedford, M.T., and Sardet, C.: ‘Coactivator-associated arginine methyltransferase 1 (CARM1) is a positive regulator of the Cyclin E1 gene’, Proc Natl Acad Sci U S A, 2006, 103, (36), pp. 13351-13356
44 Yadav, N., Lee, J., Kim, J., Shen, J., Hu, M.C., Aldaz, C.M., and Bedford, M.T.: ‘Specific protein methylation defects and gene expression perturbations in coactivator-associated arginine methyltransferase 1-deficient mice’, Proc Natl Acad Sci U S A, 2003, 100, (11), pp. 6464-6468
45 Kuhn, P., and Xu, W.: ‘Protein arginine methyltransferases: nuclear receptor coregulators and beyond’, Prog Mol Biol Transl Sci, 2009, 87, pp. 299-342
46 Higashimoto, K., Kuhn, P., Desai, D., Cheng, X., and Xu, W.: ‘Phosphorylation-mediated inactivation of coactivator-associated arginine methyltransferase 1’, Proc Natl Acad Sci U S A, 2007, 104, (30), pp. 12318-12323
47 Feng, Q., He, B., Jung, S.Y., Song, Y., Qin, J., Tsai, S.Y., Tsai, M.J., and O'Malley, B.W.: ‘Biochemical control of CARM1 enzymatic activity by phosphorylation’, J Biol Chem, 2009, 284, (52), pp. 36167-36174