研究生: |
江由之 Chiang, Yu-Chih |
---|---|
論文名稱: |
透過突出式結構增強染料敏化太陽能電池和有機光偵測器的效能研究 Performance Enhancement of Dye-sensitized Solar Cells and Organic Photodetectors through Protrusive Structures |
指導教授: |
李佳榮
Lee, Chia-Rong |
共同指導教授: |
黃家逸
Huang, Chia-Yi |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
論文出版年: | 2024 |
畢業學年度: | 113 |
語文別: | 英文 |
論文頁數: | 150 |
中文關鍵詞: | 方形突出結構 、染料敏化太陽能電池 、有機光感測器 、奈米製程 |
外文關鍵詞: | Protrusive Structure, Dye-Sensitized Solar Cell, Organic Photodetector, Nanofabrication |
ORCID: | https://orcid.org/0009-0002-5434-7416 |
ResearchGate: | https://www.researchgate.net/scientific-contributions/Yu-Chih-Chiang-2179750144 |
相關次數: | 點閱:51 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文題目為「透過突出式結構增強染料敏化太陽能電池和有機光偵測器的效能研究」。本研究著重於開發奈米級厚度的網格,並將其應用於光電元件。利用黃光微影、濺鍍以及舉離製程製造出二氧化鈦(TiO2)及氧化銦錫( ITO)網格,並分別應用於染料敏化太陽能電池(dye-sensitized solar cell, DSSC)以及有機光偵測器(organic photodetector, OPD)。TiO2和ITO網格的突出結構不僅增加了光電極的表面面積,還提供了定向的電荷傳輸通路。這些突起結構大幅提升了 DSSC 和 OPD 的光電轉換效率、反應速度和穩定性,因此在光電應用方面展現出廣大的潛力。
第一項研究重點在於使用奈米級厚度的TiO2 網格結構來增強 DSSC 的光電轉換效率。奈米級厚度的TiO2網格為突出結構。突出結構增加染料分子與 TiO2之間的接觸面積,並建立定向電子傳輸通路。實驗結果顯示,引入TiO2突出結構可有效提升DSSC的光電轉換效率。TiO2突出結構是利用黃光微影、濺鍍及舉離技術製程,因此具有成本低以及製程簡單的優點。因此TiO2突出結構是開發高效率太陽能電池的絕佳設計之一。
第二項研究重點在於使用奈米級厚度的ITO網格結構來增強OPD 的明暗電流比。奈米級厚度的 ITO 網格為突出結構。此結構增加了 OPD 中 TiO2層、主動層和鋁層的表面面積和提供定向的電荷傳輸通道,有助於電子和電洞的傳輸。與沒有 ITO 突出結構的 OPD 相比,具有突出結構的 OPD 有較大的光電流密度和較小的暗電流密度。另外,有ITO突出結構的 OPD 比沒有ITO突出結構的 OPD具有更高的光暗電流比,所以在具有 ITO 突出結構的 OPD 擁有更快的反應時間、更寬的頻率響應範圍和更久的長期穩定性。因此,具有 ITO 突起結構的 OPD 在發展光通訊、環境監控及生物醫學成像方面具有極大的潛力。
This thesis is entitled “Performance Enhancement of Dye-Sensitized Solar Cells and Organic Photodetectors Through Protrusive Structures.” The study focuses on developing nanometer-thick grids and applying them to optoelectronic devices. TiO2 and ITO grids were fabricated using photolithography, sputtering, and lift-off processes, and applied to dye-sensitized solar cells (DSSCs) and organic photodetectors (OPDs), respectively. The protrusive structures of the TiO2 and ITO grids not only increase the surface areas of photoelectrodes but also provide directional charge transport pathways. These protrusive structures significantly enhance the power conversion efficiencies, response speeds, and stabilities of the DSSCs and OPDs, so demonstrate broad potential for optoelectronic applications.
The first work focuses on the enhancement of the efficiency of a DSSC using a nanometer-thick TiO2 grid. The nanometer-thick TiO2 grid has a TiO2 protrusive structure. The TiO2 protrusive structure facilitates the contact of dye molecules and TiO2, and creates directional electron transport pathways. Experimental results show that introducing the TiO2 protrusive structure effectively enhances the power conversion efficiency of the DSSC. The TiO2 protrusive structure was fabricated using photolithography, sputtering, and lift-off techniques, so has the advantages of low cost and simple process. TiO2 protrusive structures are an excellent design for developing high-efficiency solar cells.
The second work focuses on the enhancement of the light-to-dark current ratio of a OPD using a nanometer-thick ITO grid. The nanometer-thick ITO gird has a protrusive structure. This structure increases the surface areas and directional charge transport channels of the TiO2 layer, active layer, and aluminum layer in the OPD, facilitating the transportation of the electrons and holes. The OPD with the protrusive structure has a larger photocurrent density and smaller dark current density than a OPD without a ITO protrusive structure. As a result, the OPD with the protrusive structure exhibits a higher light-to-dark current ratio than the OPD without a ITO protrusive structure. In addition, the OPD with the ITO protrusive structure exhibits a faster response time, wider frequency response range, and higher long-term stability. Therefore, the OPD with the ITO protrusive structure has great potential for developing optical communication, environmental monitoring, and biomedical imaging.
1. G. J. Parker, Encyclopedia of materials: science and technology (Elsevier Science, United Kingdom, 2001).
2. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature 347(6293), 539–541 (1990).
3. M. Marghany, Advanced Remote Sensing Technology for Tsunami Modelling and Forecasting (Chemical Rubber Company Press, London, 2018).
4. P. A. M. Dirac, The Principles of Quantum Mechanics (Oxford university press, England, 1981).
5. M. G. Raymer and B. J. Smith, The Nature of Light (Chemical Rubber Company Press, United Kingdom, 2017).
6. M. Yoshitake, Work Function and Band Alignment of Electrode Materials (National Institute for Materials Science, Japan, 2021).
7. B. J. Smith, E. Killett, B. Killett, M. G. Raymer, I. A. Walmsley, and K. Banaszek, “Measurement of the transverse spatial quantum state of light at the single-photon level,” Optics letters 30(24), 3365–3367 (2005).
8. W. West, “Proceedings of vogel centennial symposium,” Photographic Science and Engineering 18–35 (1974).
9. J. Moser, “Notiz über Verstärkung photoelektrischer Ströme durch optische Sensibilisirung,” Monatshefte für Chemie und verwandte Teile anderer Wissenschaften 8, 373 (1887).
10. S. Namba and Y. Hishiki, “Color sensitization of zinc oxide with cyanine dyes1,” The Journal of Physical Chemicstry 69(3), 774–779 (1965).
11. H. Gerischer, H. Tributsch, and B. Bunsenger, “Elektrochemische Untersuchungen über den Mechanismus der Sensibilisierung und Übersensibilisierung an ZnO-Einkristallen,” Berichte der bunsengesellschaft für physikalische Chemie 73(3), 251–256 (1969).
12. R. C. Nelson, “Minority Carrier Trapping and Dye Sensitization1a, b,” The Journal of Physical Chemistry 69(3), 714–718 (1965).
13. J. Bourdon, “Spectral Sensitization of Chemical Effects in Solids1,” The Journal of Physical Chemistry 69(3), 705–713 (1965).
14. H. Gerischer and H. Tributsch, “Elektrochemische Untersuchungen zur spektralen Sensibilisierung von ZnO-Einkristallen,” Berichte der Bunsengesellschaft für physikalische Chemie 72(3), 437–445 (1968).
15. H. Tsubomura, M. Matsumura, Y. Nomura, and T. Amamiya, “Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell,” Nature 261(5559), 402–403 (1976).
16. W. D. K. Clark and N. Sutin, “Spectral sensitization of n-type titanium dioxide electrodes by polypyridineruthenium (II) complexes,” Journal of the American Chemical society 99(14), 4676–4682 (1977).
17. S. Anderson, E. C. Constable, M. P. Dare-Edwards, J. B. Goodenough, A. Hamnett, K. R. Seddon, and R. D. Wright, “Chemical modification of a titanium (IV) oxide electrode to give stable dye sensitisation without a supersensitiser,” Nature 280(5723), 571–573 (1979).
18. H. Gerischer, “Electrochemical techniques for the study of photosensitization,” Photochem Photobiol 16(4), 243–260 (1972).
19. R. Memming, “Photochemical and electrochemical processes of excited dyes at semiconductor and metal electrodes,” Photochem Photobiology 16(4), 325–333 (1972).
20. A. Fujishima, T. Watanabe, O. Tatsuoki, and K. Honda, “Spectral Senssitization fo Photo-Electrochemical Reactions of Cadmium Sulfide Single Crystal Electrode,” Chemistry Letters 4(1), 13–18 (1975).
21. T. S. Jayadevaiah, “Semiconductor-electrolyte interface devices for solar energy conversion,” Applied Physics Letters 25(7), 399–400 (1974).
22. A. Hamnett, M. P. Dare-Edwards, R. D. Wright, K. R. Seddon, and J. B. Goodenough, “Photosensitization of titanium (IV) oxide with tris (2, 2’-bipyridine) ruthenium (II) chloride. Surface states of titanium (IV) oxide,” Journal of Physical Chemistry 83(25), 3280–3290 (1979).
23. M. P. Dare-Edwards, J. B. Goodenough, A. Hamnett, K. R. Seddon, and R. D. Wright, “Sensitisation of semiconducting electrodes with ruthenium-based dyes,” Faraday Discussions of the Chemical Society 70, 285–298 (1980).
24. H. Tsubomura, M. Matsumura, Y. Nomura, and T. Amamiya, “Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell,” Nature 261(5559), 402–403 (1976).
25. O. Regan and M. Gratzel, “Light induced charge separation in nanocrystalline films,” Nature 353(14), 737–740 (1991).
26. B. Li, L. Wang, B. Kang, P. Wang, and Y. Qiu, “Review of recent progress in solid-state dye-sensitized solar cells,” Solar energy materials and solar cells 90(5), 549–573 (2006).
27. P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, and M. Grätzel, “A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte,” Nature Materials 2(6), 402–407 (2003).
28. J. Wu, Z. Lan, J. Lin, M. Huang, S. Hao, T. Sato, and S. Yin, “A novel thermosetting gel electrolyte for stable quasi-solid-state dye-sensitized solar cells,” Advanced Materials 19(22), 4006–4011 (2007).
29. U. Bach, D. Lupo, P. Comte, J.-E. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, and M. Grätzel, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies,” Nature 395(6702), 583–585 (1998).
30. M. Grätzel, “Dye-sensitized solid-state heterojunction solar cells,” Materials Research Society bulletin 30(1), 23–27 (2005).
31. P. Wang, C. Klein, R. Humphry-Baker, S. M. Zakeeruddin, and M. Grätzel, “A high molar extinction coefficient sensitizer for stable dye-sensitized solar cells,” Journal of the American Chemical Society 127(3), 808–809 (2005).
32. V. K. Zworykin, G. A. Morton, and L. Malter, “The secondary emission multiplier-a new electronic device,” Proceedings of the Institute of Radio Engineers 24(3), 351–375 (1936).
33. H. Kallmann and M. Pope, “Photovoltaic effect in organic crystals,” The Journal of Chemical Physics 30(2), 585–586 (1959).
34. H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K.Chiang, and A. J. Heeger, “Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene,(CH)x,” Journal of the Chemical Communications 16, 578–580 (1977).
35. P. Cusumano, A. Parisi, A. Busacca, and A. Busacca, “Photovoltaic characterization of organic solar cells,” in SIE2018 Book of Abstracts (IT, 2018).
36. B. A. Gregg, M. A. Fox, and A. J. Bard, “2, 3, 7, 8, 12, 13, 17, 18-Octakis (. beta.-hydroxyethyl) porphyrin (octaethanolporphyrin) and its liquid crystalline derivatives: synthesis and characterization,” Journal of the American Chemical Society 111(8), 3024–3029 (1989).
37. S. Yanagida, S. Nakade, T. Kanzaki, T. Kitamura, and Y. Wada, “Interfacial Condition of Nanoporous TiO2 Electrode and Charge Transport in Dye-sensitized Solar Cells,” in Electron Transfer in Nanomaterials: Proceedings of the International Symposium 2004, 112 (2006)
38. M. Grätzel, “Solar energy conversion by dye-sensitized photovoltaic cells,” Inorg Chemistry 44(20), 6841–6851 (2005).
39. H. Greijer Agrell, G. Boschloo, and A. Hagfeldt, “Conductivity studies of nanostructured TiO2 films permeated with electrolyte,” The Journal of Physical Chemistry B 108(33), 12388–12396 (2004).
40. J. E. Moser and M. Grätzel, “Observation of temperature independent heterogeneous electron transfer reactions in the inverted Marcus region,” Chemical physics 176(2–3), 493–500 (1993).
41. G. Redmond, A. O’Keeffe, C. Burgess, C. MacHale, and D. Fitzmaurice, “Spectroscopic determination of the flatband potential of transparent nanocrystalline zinc oxide films,” The journal of physical chemistry 97(42), 11081–11086 (1993).
42. F. Fabregat-Santiago, J. Bisquert, G. Garcia-Belmonte, G. Boschloo, and A. Hagfeldt, “Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy,” Solar energy materials and solar cells 87(1–4), 117–131 (2005).
43. P. Wang, S. M. Zakeeruddin, J. E. Moser, R. Humphry-Baker, P. Comte, V. Aranyos, A. Hagfeldt, M. K. Nazeeruddin, and M. Graetzel, “Stable new sensitizer with improved light harvesting for nanocrystalline dye-sensitized solar cells,” Advanced Materials 16(20), 1806–1811 (2004).
44. Y. Shichibu, Y. Negishi, T. Tsukuda, and T. Teranishi, “Large-scale synthesis of thiolated Au25 clusters via ligand exchange reactions of phosphine-stabilized Au11 clusters,” Journal of the American Chemical Society, 127(39), 13464–13465 (2005).
45. A. B. F. Martinson, T. W. Hamann, M. J. Pellin, and J. T. Hupp, “New Architectures for Dye-Sensitized Solar Cells,” Chemistry–A European Journal 14(15), 4458–4467 (2008).
46. L. M. Gonçalves, V. de Zea Bermudez, H. A. Ribeiro, and A. M. Mendes, “Dye-sensitized solar cells: A safe bet for the future,” Energy and Environmentel Science 1(6), 655–667 (2008).
47. E. Wlaźlak, Badanie wpływu oddziaływań międzycząsteczkowych na właściwości wybranych jodków i trójjodków (Doctoral dissertation, 2019).
48. Y. Tachibana, J. E. Moser, M. Grätzel, D. R. Klug, and J. R. Durrant, “Subpicosecond interfacial charge separation in dye-sensitized nanocrystalline titanium dioxide films,” The Journal of Physical Chemistry, 100(51), 20056–20062 (1996).
49. J.-E. Moser and M. Grätzel, “Excitation-wavelength dependence of photoinduced charge injection at the semiconductor-dye interface: Evidence for electron transfer from vibrationally hot excited states,” Chimia 52(4), 160–160 (1998).
50. T. D. M. Bell, C. Pagba, M. Myahkostupov, J. Hofkens, and P. Piotrowiak, “Inhomogeneity of electron injection rates in dye-sensitized TiO2: continuous mesoporous films and single particle behavior,” In Physical Chemistry of Interfaces and Nanomaterials V 6325,165–171 (2006).
51. U. Bach, Y. Tachibana, J.-E. Moser, S. A. Haque, J. R. Durrant, M. Grätzel, and D. R. Klug, “Charge separation in solid-state dye-sensitized heterojunction solar cells,” Journal of the American Chemical Society 121(32), 7445–7446 (1999).
52. Standard, A. S. T. M. E948-09, Standard Test Method for Electrical Performance of Photovoltaic Cells Using Reference Cells Under Simulated Sunlight (West Conshohocken, PA, USA: ASTM International, 2009)
53. A. Marzo, P. Ferrada, F. Beiza, J. Alonso-Montesinos, J. Ballestrin, and R. Román, “Comparison of Atacama desert solar spectra vs. ASTM G173–03 reference spectra for solar energy application,” In Conference Proceedings EuroSun (2016).
54. C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, “Origin of the open circuit voltage of plastic solar cells," Advanced functinoal materials 11(5), 374–380 (2001).
55. A. Moliton and J. M. Nunzi, “How to model the behaviour of organic photovoltaic cells,” Polymer International 55(6), 583–600 (2006).
56. S. R. Forrest, “The limits to organic photovoltaic cell efficiency,” Materials Research Society Bulletin 30(1), 28–32 (2005).
57. M. Pope and C. E. Swenberg, “Electronic processes in organic solids,” Annual Review of Physical Chemistry 35(1) 613–655 (1984).
58. C. Deibel, T. Strobel, and V. Dyakonov, “Role of the charge transfer state in organic donor–acceptor solar cells,” Advanced materials 22(37), 4097–4111 (2010).
59. R. Kersting, U. Lemmer, M. Deussen, H. J. Bakker, R. F. Mahrt, H. Kurz, V. I. Arkhipov, H. Bässler, and E. O. Göbel, “Ultrafast field-induced dissociation of excitons in conjugated polymers,” Physical review letters 73(10), 1440 (1994).
60. D. Yang and D. Ma, “Development of organic semiconductor photodetectors: from mechanism to applications,” Advanced optical materials 7(1), 1800522 (2019).
61. T. P. Osedach, A. Iacchetti, R. R. Lunt, T. L. Andrew, P. R. Brown, G. M. Akselrod, and V. Bulović, “Near-infrared photodetector consisting of J-aggregating cyanine dye and metal oxide thin films,” Applied Physics Letters 101(11), (2012).
62. R. A. Street, M. Schoendorf, A. Roy, and J. H. Lee, “Interface state recombination in organic solar cells,” Physical Review B–Condensed Matter and Materials Physics 81(20), 205307 (2010).
63. K. Tvingstedt and C. Deibel, “Temperature dependence of ideality factors in organic solar cells and the relation to radiative efficiency,” Advanced Energy Materials 6(9), 1502230 (2016).
64. V. Pecunia, Organic Narrowband Photodetectors: Materials, Devices and Applications (Institute of Physics Publishing, United Kingdom, 2019).
65. J. Miao and F. Zhang, “Recent progress on photomultiplication type organic photodetectors,” Laser and Photonics Reviews 13(2), 1800204 (2019).
66. W. Wang, F. Zhang, M. Du, L. Li, M. Zhang, K. Wang, Y. Wang, B. Hu, Y. Fang, and J. Huang, “Highly narrowband photomultiplication type organic photodetectors,” Nano Letters 17(3), 1995–2002 (2017).
67. J. Miao, F. Zhang, M. Du, W. Wang, and Y. Fang, “Photomultiplication type narrowband organic photodetectors working at forward and reverse bias,” Physical Chemistry Chemical Physics 19(22), 14424–14430 (2017).
68. S. Takada, M. Hayashi, T. Mitsui, Y. Maehara, and M. Ihama, “CMOS color image sensor overlaid with organic photoelectric conversion layers: depression of dark current,” In Proceedings of the International Image Sensor Workshop, Ogunquit Maine, United States of America, 7–10. (2007)
69. S. Aihara, H. Seo, M. Namba, T. Watabe, H. Ohtake, M. Kubota, N. Egami, T. Hiramatsu, T. Matsuda, M. Furuta, and others, “Stacked image sensor with green-and red-sensitive organic photoconductive films applying zinc oxide thin-film transistors to a signal readout circuit,” Institute of Electrical and Electronics Engineers Transasions on Electron Devices 56(11), 2570–2576 (2009).
70. A. Armin, M. Hambsch, I. K. Kim, P. L. Burn, P. Meredith, and E. B. Namdas, “Thick junction broadband organic photodiodes,” Laser and Photonics Reviews 8(6), 924–932 (2014).
71. A. Armin, R. D. Jansen-van Vuuren, N. Kopidakis, P. L. Burn, and P. Meredith, “Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes,” Nature Communications 6(1), 6343 (2015).
72. R. J. Keyes, Optical and Infrared Detectors (Springer Science & Business Media, Germany, 2013).
73. J.-M. Liu, Photonic Devices (Cambridge University Press, England, 2009).
74. W. Li, D. Li, G. Dong, L. Duan, J. Sun, D. Zhang, and L. Wang, “High-stability organic red-light photodetector for narrowband applications,” Laser and Photonics Reviews 10(3), 473–480 (2016).
75. R. H. Bube, Photoelectronic Properties of Semiconductors (Cambridge University Press, England, 1992).
76. S. R. Cowan, J. Wang, J. Yi, Y.-J. Lee, D. C. Olson, and J. W. P. Hsu, “Intensity and wavelength dependence of bimolecular recombination in P3HT: PCBM solar cells: A white-light biased external quantum efficiency study,” Journal of Applied Physics 113(15), (2013).
77. L. J. A. Koster, M. Kemerink, M. M. Wienk, K. Maturová, and R. A. J. Janssen, “Quantifying bimolecular recombination losses in organic bulk heterojunction solar cells,” Advanced Materials 23(14), 1670–1674 (2011).
78. L. J. A. Koster, V. D. Mihailetchi, H. Xie, and P. W. M. Blom, “Origin of the light intensity dependence of the short-circuit current of polymer/fullerene solar cells,” Applied Physics Letters 87(203502), 1–3 (2005).
79. M. Kielar, O. Dhez, G. Pecastaings, A. Curutchet, and L. Hirsch, “Long-term stable organic photodetectors with ultra low dark currents for high detectivity applications,” Scientific reports 6(1), 39201 (2016).
80. A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin, and M. Grätzel, “Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency,” Science 334(6056), 629–634 (2011).
81. K. Zhu, N. R. Neale, A. Miedaner, and A. J. Frank, “Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays," Nano Lett 7(1), 69–74 (2007).
82. O. K. Varghese, M. Paulose, and C. A. Grimes, “Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells,” Nature Nanotechnology 4(9), 592–597 (2009).
83. S. P. Albu, A. Ghicov, J. M. Macak, R. Hahn, and P. Schmuki, “Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications,” Nano Letters 7(5), 1286–1289 (2007).
84. J. Yan and F. Zhou, “TiO2 nanotubes: Structure optimization for solar cells,” Journal of Materials Chemistry 21(26), 9406–9418 (2011).
85. D. Gong, C. A. Grimes, O. K. Varghese, W. Hu, R. S. Singh, Z. Chen, and E. C. Dickey, “Titanium oxide nanotube arrays prepared by anodic oxidation,” Journal of Materials Research 16, 3331–3334 (2001).
86. J. M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, and P. Schmuki, “Smooth anodic TiO2 nanotubes,” Angewandte Chemie International Edition 44(45), 7463–7465 (2005).
87. Q. Cai, M. Paulose, O. K. Varghese, and C. A. Grimes, “The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation,” Journal of Materials Research 20(1), 230–236 (2005).
88. H. Park, C. Yang, and W.-Y. Choi, “Organic and inorganic surface passivations of TiO2 nanotube arrays for dye-sensitized photoelectrodes,” Journal of Power Sources 216, 36–41 (2012).
89. S. Muduli, W. Lee, V. Dhas, S. Mujawar, M. Dubey, K. Vijayamohanan, S.-H. Han, and S. Ogale, “Enhanced conversion efficiency in dye-sensitized solar cells based on hydrothermally synthesized TiO2- MWCNT nanocomposites,” American Chemical Society Applied Materials and Interfaces 1(9), 2030–2035 (2009).
90. T. Y. Lee, P. S. Alegaonkar, and J.-B. Yoo, “Fabrication of dye sensitized solar cell using TiO2 coated carbon nanotubes,” Thin Solid Films 515(12), 5131–5135 (2007).
91. A. de Morais, L. M. D. Loiola, J. E. Benedetti, A. S. Goncalves, C. A. O. Avellaneda, J. H. Clerici, M. A. Cotta, and A. F. Nogueira, “Enhancing in the performance of dye-sensitized solar cells by the incorporation of functionalized multi-walled carbon nanotubes into TiO2 films: The role of MWCNT addition,” Journal of Photochemistry and Photobiology A: Chemistry 251, 78–84 (2013).
92. C. B. Song, Y. H. Qiang, Y. L. Zhao, X. Q. Gu, D. M. Song, and L. Zhu, “Adhesion of TiO2 nanotube arrays on transparent conducting substrates using CNT–TiO2 composite pastes,” Applied surface science 305(30), 792–796 (2014).
93. M. H. Lai, M. W. Lee, G.-J. Wang, and M. F. Tai, “Photovoltaic performance of new-structure ZnO-nanorod dye-sensitized solar cells,” International Journal of Electrochemical Science 6(6), 2122–2130 (2011).
94. M. Paulose, K. Shankar, O. K. Varghese, G. K. Mor, B. Hardin, and C. A. Grimes, “Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes,” Nanotechnology 17(5), 1446 (2006).
95. G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, “Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells,” Nano Letters 6(2), 215–218 (2006).
96. K. M. Lee, E. S. Lee, B. Yoo, and D. H. Shin, “Synthesis of ZnO-decorated TiO2 nanotubes for dye-sensitized solar cells,” Electrochim Acta 109(30), 181–186 (2013).
97. F. Li, Y. Jiao, S. Xie, and J. Li, “Sponge-like porous TiO2/ZnO nanodonuts for high efficiency dye-sensitized solar cells,” Journal of Power Sources 280(15), 373–378 (2015).
98. S. V. Bhat, A. Govindaraj, and C. N. R. Rao, “Hybrid solar cell based on P3HT–ZnO nanoparticle blend in the inverted device configuration,” Solar Energy Materials and Solar Cells 95(8), 2318–2321 (2011).
99. L. Feng, Z. Ma, S. Feng, Z. Liu, H. Xu, O. Zhou, L. Deng, L. Yang, S. Altynay, X. Jiang, and others, “High-responsivity ultraviolet–visible photodetector based on an individual (GaN) 1-x (ZnO) x solid solution nanobelt,” Optical Materials 139,113796 (2023).
100. H. Yu, Z. Wu, Y. Dong, C. Huang, S. Shi, and Y. Zhang, “ZnO nanorod arrays modified with Bi2S3 nanoparticles as cathode for efficient polymer solar cells,” Organic Electronics 75,105369 (2019).
101. T. Weng, M. Yan, X. Yu, Q. Qiao, Y. Zhou, Z. Li, J. Wei, and X. Yu, “Light scattering enhancement of ZnO nanorods via Mg–Al co-doping and their influence on polymeric photodetector,” Optical Materials 121, 111516 (2021).
102. Y.-C. Ho, S.-H. Kao, H.-C. Lee, S.-K. Chang, C.-C. Lee, and C.-F. Lin, “Investigation of the localized surface plasmon effect from Au nanoparticles in ZnO nanorods for enhancing the performance of polymer solar cells,” Nanoscale 7(2), 776–783 (2015).
103. J. Zhou, Q. Qiao, Y. Tan, C. Wu, J. Hu, X. Qiu, S. Wu, J. Zheng, R. Wang, C. Zhang, and others, “The improvement of polymer photodetector based on 1D-ZnO nanorod arrays/0D-ZnO quantum dots composite film,” Optical Materials 142, 114086 (2023).
104. Y. Tan, Q. Qiao, T. Weng, Y. Jia, R. Wang, X. Yu, Y. Su, Z. Li, and X. Yu, “Self-powered photodetector based on poly (3-hexylthiophene)/Zinc oxide quantum dots Organic-inorganic hybrid heterojunction,” Chemical Physics Letters 806, 140033 (2022).
105. C. Shalu, M. Shukla, A. Tiwari, J. Agrawal, A. Bilgaiyan, and V. Singh, “Role of solvent used to cast P3HT thin films on the performance of ZnO/P3HT hybrid photo detector,” Physica E: Low-Dimensional Systems and Nanostructures 115, 113694 (2020).
106. S. Li, Z. Yan, Z. Liu, J. Chen, Y. Zhi, D. Guo, P. Li, Z. Wu, and W. Tang, “A self-powered solar-blind photodetector with large Voc enhancing performance based on the PEDOT: PSS/Ga2O3 organic–inorganic hybrid heterojunction,” Journal of Materials Chemistry C 8(4), 1292–1300 (2020).
107. Y. Zhang, Y. Zhai, H. Zhang, Z. Wang, Y. Zhang, R. Xu, S. Ruan, and J. Zhou, “A high-performance UVA photodetector based on polycrystalline perovskite MAPbCl3/TiO2 nanorods heterojunctions,” Sensors 23(15), 6726 (2023).
108. A. Bilgaiyan, T. Dixit, I. A. Palani, and V. Singh, “Performance improvement of ZnO/P3HT hybrid UV photo–detector by interfacial Au nanolayer,” Physica E: Low Dimensional Systems and Nanostructures 86, 136–141 (2017).
109. A. Zhai, C. Zhao, D. Pan, S. Zhu, W. Wang, T. Ji, G. Li, R. Wen, Y. Zhang, Y. Hao, and others, “Organic Photodetectors with Extended Spectral Response Range Assisted by Plasmonic Hot-Electron Injection,” Nanomaterials 12(17), 3084 (2022).
110. Z. Yuan, P. C. Wu, and Y.-C. Chen, “Optical resonator enhanced photovoltaics and photocatalysis: fundamental and recent progress,” Laser & Photonics Reviews 16(2), 2100202 (2022).
111. K. Sharma, V. Sharma, and S. S. Sharma, “Dye-sensitized solar cells: fundamentals and current status,” Nanoscale Research Letters 13(381), 1–46 (2018).
112. N. Mariotti, M. Bonomo, L. Fagiolari, N. Barbero, C. Gerbaldi, F. Bella, and C. Barolo, “Recent advances in eco-friendly and cost-effective materials towards sustainable dye-sensitized solar cells,” Green chemistry 22(21), 7168–7218 (2020).
113. H. Iftikhar, G. G. Sonai, S. G. Hashmi, A. F. Nogueira, and P. D. Lund, “Progress on electrolytes development in dye-sensitized solar cells,” Materials 12(12), 1998 (2019).
114. L. Chen, W.-L. Chen, X.-L. Wang, Y.-G. Li, Z.-M. Su, and E.-B. Wang, “Polyoxometalates in dye-sensitized solar cells,” Chemical Society Reviews 48(1), 260–284 (2019).
115. M. Urbani, M.-E. Ragoussi, M. K. Nazeeruddin, and T. Torres, “Phthalocyanines for dye-sensitized solar cells,” Coordination Chemistry Reviews 381, 1–64 (2019).
116. J. Ferber, R. Stangl, and J. Luther, “An electrical model of the dye-sensitized solar cell,” Solar Energy Materials and Solar Cells 53(1–2), 29–54 (1998).
117. K. Zeng, Z. Tong, L. Ma, W.-H. Zhu, W. Wu, and Y. Xie, “Molecular engineering strategies for fabricating efficient porphyrin-based dye-sensitized solar cells,” Energy & Environmental Science 13(6), 1617–1657 (2020).
118. A. M. Ammar, H. S. H. Mohamed, M. M. K. Yousef, G. M. Abdel-Hafez, A. S. Hassanien, and A. S. G. Khalil, “Dye-sensitized solar cells (DSSCs) based on extracted natural dyes,” Journal of Nanomaterials 2019(1), 1867271 (2019).
119. R. D. McConnell, “Assessment of the dye-sensitized solar cell,” Renewable and Sustainable Energy Reviews 6(3), 271–293 (2002).
120. R. Shashanka, H. Esgin, V. M. Yilmaz, and Y. Caglar, “Fabrication and characterization of green synthesized ZnO nanoparticle-based dye-sensitized solar cells,” Journal of Science: Advanced Materials and Devices 5(2), 185–191 (2020).
121. S. H. Kang, J. Y. Kim, H. S. Kim, S. H. Choi, T. Hyeon, M. S. Kang, and Y.-E. Sung, “Nanorod-based dye-sensitized solar cells with improved charge collection efficiency,” Advanced Materials (Weinheim) 20(1), 54–58 (2008).
122. J. H. Yang, C. W. Bark, K. H. Kim, and H. W. Choi, “Characteristics of the dye-sensitized solar cells using TiO2 nanotubes treated with TiCl4,” Materials 7(5), 3522–3532 (2014).
123. H. Yu, S. Zhang, H. Zhao, B. Xue, P. Liu, and G. Will, “High-performance TiO2 photoanode with an efficient electron transport network for dye-sensitized solar cells,” The Journal of Physical Chemistry C 113(36), 16277–16282 (2009).
124. Y. Qiu, S. Zhang, B. Li, Y. Wang, J.-W. Lee, F. Li, and D. Zhao, “Improvement of tribological performance of CrN coating via multilayering with VN,” Surface and Coatings Technology 231(25), 357–363 (2013).
125. S. Asalzadeh and K. Yasserian, “The effect of various annealing cooling rates on electrical and morphological properties of TiO2 thin films,” Semiconductors 53(12), 1603–1607 (2019).
126. L. Han, N. Koide, Y. Chiba, A. Islam, and T. Mitate, “Modeling of an equivalent circuit for dye-sensitized solar cells: improvement of efficiency of dye-sensitized solar cells by reducing internal resistance,” Comptes Rendus Chimie 9(5–6), 645–651 (2006).
127. R. Kern, R. Sastrawan, J. Ferber, R. Stangl, and J. Luther, “Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions,” Electrochimica Acta 47(26), 4213–4225 (2002).
128. T. Hoshikawa, M. Yamada, R. Kikuchi, and K. Eguchi, “Impedance analysis of internal resistance affecting the photoelectrochemical performance of dye-sensitized solar cells,” Journal of Electrochemical Society 152(2), E68 (2005).
129. J. Bisquert, G. Garcia-Belmonte, F. Fabregat-Santiago, and A. Compte, “Anomalous transport effects in the impedance of porous film electrodes,” Electrochemistry commununications 1(9), 429–435 (1999).
130. J. Bisquert, G. Garcia-Belmonte, F. Fabregat-Santiago, N. S. Ferriols, P. Bogdanoff, and E. C. Pereira, “Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution,” The Journal of Physical Chemistry B 104(10), 2287–2298 (2000).
131. C. B. Song, Y. H. Qiang, Y. L. Zhao, X. Q. Gu, D. M. Song, and L. Zhu, “Adhesion of TiO2 nanotube arrays on transparent conducting substrates using CNT–TiO2 composite pastes,” Applied surface science 305, 792–796 (2014).
132. Q. Wang, J.-E. Moser, and M. Grätzel, “Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells,” The Jounal of Physicsal Chemistry B 109(31), 14945–14953 (2005).
133. R. Kern, R. Sastrawan, J. Ferber, R. Stangl, and J. Luther, “Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions,” Electrochimica acta 47(26), 4213–4225 (2002).
134. H. Anabestani, S. Nabavi, and S. Bhadra, “Advances in flexible organic photodetectors: Materials and applications,” Nanomaterials 12(21), 3775 (2022).
135. R. S. Aga, J. P. Lombardi, C. M. Bartsch, and E. M. Heckman, “Performance of a printed photodetector on a paper substrate,” Institute of Electrical and Electronics Engineers Photonics Technology Letters 26(3), 305–308 (2013).
136. W. Jang, B. G. Kim, S. Seo, A. Shawky, M. S. Kim, K. Kim, B. Mikladal, E. I. Kauppinen, S. Maruyama, I. Jeon, and others, “Strong dark current suppression in flexible organic photodetectors by carbon nanotube transparent electrodes,” Nano Today 37, 101081 (2021).
137. Z. Lan, M.-H. Lee, and F. Zhu, “Recent advances in solution-processable organic photodetectors and applications in flexible electronics,” Advanced Intelligent Systems 4(3), 2100167 (2022).
138. L. Li, F. Zhang, J. Wang, Q. An, Q. Sun, W. Wang, J. Zhang, and F. Teng, “Achieving EQE of 16,700% in P3HT: PC71BM based photodetectors by trap-assisted photomultiplication,” Scientific reports 5(1), 9181 (2015).
139. J. Zheng, D. Yang, D. Guo, L. Yang, J. Li, and D. Ma, “An ultrafast organic photodetector with low dark current for optical communication systems,” American Chemical Society Photonics 10(5), 1382–1388 (2023).
140. J. Clark and G. Lanzani, “Organic photonics for communications,” Nature Photonics 4(7), 438–446 (2010).
141. X. Xu, X. Zhou, K. Zhou, Y. Xia, W. Ma, and O. Inganäs, “Large-area, semitransparent, and flexible all-polymer photodetectors,” Advanced Functional Materials 28(48), 1805570 (2018).
142. J. Oliveira, R. Brito-Pereira, B. F. Gonçalves, I. Etxebarria, and S. Lanceros-Mendez, “Recent developments on printed photodetectors for large area and flexible applications,” Organic Electronics 66, 216–226 (2019).
143. C. Xie and F. Yan, “Flexible photodetectors based on novel functional materials,” Small 13(43), 1701822 (2017).
144. Y. Yan, Q. Wu, Y. Zhao, S. Chen, S. Hu, J. Zhu, J. Huang, and Z. Liang, “Air-stable and self-driven perovskite photodiodes with high on/off ratio and swift photoresponse” Small 14(41), 1802764 (2018).
145. Z. Zhao, B. Liu, C. Xu, L. Li, M. Liu, K. Yang, S. Y. Jeong, H. Y. Woo, G. Yuan, W. Li, and others, “Highly stable photomultiplication-type organic photodetectors with single polymers containing intramolecular traps as the active layer,” Journal of Materials Chemistry C 10(20), 7822–7830 (2022).
146. C. Wu, B. Du, W. Luo, Y. Liu, T. Li, D. Wang, X. Guo, H. Ting, Z. Fang, S. Wang, and others, “Highly efficient and stable self-powered ultraviolet and deep-blue photodetector based on Cs2AgBiBr6/SnO2 heterojunction,” Advanced Optical Mater 6(22), 1800811 (2018).
147. T. Wang, Y. Hu, Z. Deng, Y. Wang, L. Lv, L. Zhu, Z. Lou, Y. Hou, and F. Teng, “High sensitivity, fast response and low operating voltage organic photodetectors by incorporating a water/alcohol soluble conjugated polymer anode buffer layer,” Royal Society of Chemistry Advances 7(3), 1743–1748 (2017).
148. S. Li, J. Pan, H. Li, Y. Liu, W. Ou, J. Wang, C. Song, W. Zhao, Y. Zheng, and C. Li, “The transparent SnO/ZnO quantum dots/SnO2 pn junction towards the enhancement of photovoltaic conversion,” Chemical Engineering Journal 366, 305–312 (2019).
149. T. Yang, Y. Zheng, Z. Du, W. Liu, Z. Yang, F. Gao, L. Wang, K.-C. Chou, X. Hou, and W. Yang, “Superior photodetectors based on all-inorganic perovskite CsPbI3 nanorods with ultrafast response and high stability,” ACS Nano 12(2), 1611–1617 (2018).
150. R. L. Poveda, S. Achar, and N. Gupta, “Thermal expansion of carbon nanofiber-reinforced multiscale polymer composites,” the journal of the Minerals, Metals and Materials Society 64(10), 1148–1157 (2012).
151. J. Zhou, Q. Qiao, Y. Tan, C. Wu, J. Hu, X. Qiu, S. Wu, J. Zheng, R. Wang, C. Zhang, and others, “The improvement of polymer photodetector based on 1D-ZnO nanorod arrays/0D-ZnO quantum dots composite film,” Optical Materials 142, 114086 (2023).
152. B. Pan, M. Wu, G. Yang, D. Zhao, and J. Yu, “Low dark current and high-performance hybrid perovskite photodetectors with a PBDB-T:IHIC ultrathin passivation layer,” Optics Letters 45(20), 5860–5863 (2020).
153. H. Shekhar, O. Solomeshch, D. Liraz, and N. Tessler, “Low dark leakage current in organic planar heterojunction photodiodes,” Applied Physics Letters 111(22), 223301-1–223301-5 (2017).
154. B. Arredondo, C. de Dios, R. Vergaz, G. del Pozo, and B. Romero, “High-Bandwidth organic photodetector analyzed by impedance spectroscopy,” Institute of Electrical and Electronics Engineers Photonics Technology Letters 24(20), 1868–1871 (2012).
155. Q. Liu, L. Li, J. Wu, Y. Wang, L. Yuan, Z. Jiang, J. Xiao, D. Gu, W. Li, H. Tai, and others, “Organic photodiodes with bias-switchable photomultiplication and photovoltaic modes,” Nature Communications 14(1), 6935 (2023).
156. R. D. Jansen-van Vuuren, A. Armin, A. K. Pandey, P. L. Burn, and P. Meredith, “Organic photodiodes: the future of full color detection and image sensing,” Advanced Materials 28(24), 4766–4802 (2016).
157. G. Simone, M. J. Dyson, S. C. J. Meskers, R. A. J. Janssen, and G. H. Gelinck, “Organic photodetectors and their application in large area and flexible image sensors: the role of dark current,” Advanced Functtional Materials 30(20), 1904205 (2020).
158. Q. Lin, A. Armin, P. L. Burn, and P. Meredith, “Filterless narrowband visible photodetectors,” Nature Photonics 9(10), 687–694 (2015).
159. K. Kato, S. Hata, J. Yoshida, and A. Kozen, “Design of high-speed and high-sensitivity photodiode with an input optical waveguide on semi-insulating InP substrate,” In LEOS 1992 Summer Topical Meeting Digest on Broadband Analog and Digital Optoelectronics, Optical Multiple Access Networks, Integrated Optoelectronics, and Smart Pixels, 254–257 (1992).
160. J. U. Ha, K. Kim, S. Yoon, K. M. Sim, J. Cho, and D. S. Chung, “Synergetic effect of a surfactant on the facile fabrication and high detectivity of an inverted organic bulk heterojunction photodiode,” ACS Photonics 4(8), 2085–2090 (2017).