簡易檢索 / 詳目顯示

研究生: 何基再
Ho, Chi-Tsai
論文名稱: 氣化合成氣旁通式觸媒駐焰燃燒室於微型氣渦輪引擎之研究
A Study of Bypassed Catalytic Combustion for Syn-gas Application in Miniature Gas Turbines
指導教授: 趙怡欽
Chao, Yei-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 76
中文關鍵詞: 旁通比氣化合成氣觸媒燃燒微型氣渦輪
外文關鍵詞: Syn-Gas, Bypass ratio, Catalytic Combustion, Miniature Gas Turbine
相關次數: 點閱:96下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 針對日益受到重視的低熱值氣化合成氣於微型氣渦輪引擎的應用所引起的問題,吾人特別提出旁通式氣化合成氣觸媒駐焰燃燒室的概念,利用並行非觸媒旁通管道預熱並旁通部分燃料氣體,而與經過觸媒管道的高溫氣體迅速混合點燃穩駐於下游氣相反應區並持續燃燒釋放熱量,燃燒室中的觸媒用來點燃以及提高氣體溫度以穩駐下游氣相燃燒。吾人首先利用數值模擬的方法證實旁通觸媒燃燒室的可行性,同時使用單管旁通式觸媒燃燒室也觀察到下游氣相反應區。接著觀察不同燃料成分與流體速度的差異,量測觸媒壁面與出口溫度,更進一步利用化學發光影像技術,觀察OH的分布情形。在結果中發現氣化合成氣中的H2先被觸媒表面反應點燃,接著引起靠近壁面的CO氣相反應並且延續到下游。在足夠的觸媒反應熱下,旁通比是決定穩駐觸媒出口下游勻相氣相反應之重要因素,大部分氣化合成氣中之CO是在此反應中進行氧化反應。另外,隨著燃料中H2比例的增加,不僅壁面溫度會增加同時也會幫助下游氣相反應區穩駐。

    In view of the increasing global concern of the depletion of the convenient fossil fuels, combustion of low heating value fuels attracts intensive attention of the research community. For efficient and clean applications, syngas from gasified low heating value fuels are used for power generation in catalytic gas turbines. The contradicting problems of temperature limitation due to catalyst sintering and the gas turbine efficiency lead to greatly sacrifice in the overall efficiency in the current catalytic gas turbines. In the present study, we propose the concept of a bypass-catalytic-stabilization combustor for use in the miniature syngas gas turbines. By placing the non-catalyst bypass channels next to the catalyst channel, some of the fuel-air mixture is bypassed and preheated in the channel and the preheated mixture mixes with the hot gas from the catalytic channel and ignites and burns stably in the downstream gas-phase reaction zone. In this study, firstly, numerical simulations are performed in a syngas catalytic miniature gas turbine combustor with various parameters of bypass ratios and pressure ratios to evaluate the feasibility of the concept. Secondly, the catalytic reaction and gas-phase combustion characteristics are observed by using the bypassed single catalytic channel combustor. Temperature measurements of the catalytic surface and gas-phase reaction zone under different velocities and fuel compositions are performed. The distributions of OH radicals in the reaction zones are measured by using chemiluminescence-imaging techniques. The results show that H2 of the syngas can first be ignited by surface catalytic reaction at the channel entrance and enhance the gas-phase reaction of CO near the wall and downstream. Bypass ratio dominates the supplies of combustible mixture downstream of the catalyst outlet to stabilize the following gas phase reactions in the homogeneous gas-phase reaction zone when the energy release from catalyst and bypass channels is sufficient. CO component of the syngas is mostly consumed in the gas-phase reaction in this region. In addition, we observe that not only the temperature of catalytic surface is increased but also the gas-phase reaction is enhanced with increasing the content of H2.

    摘要 I ABSTRACT II 致謝 IV 目錄 V 表目錄 VIII 圖目錄 IX 符號說明 XII 第一章 簡介 1 1-1 前言 1 1-2 觸媒燃燒基本原理 2 1-3 氣化合成氣 4 1-4 微型氣渦輪引擎 5 1-5 研究動機 5 第二章 文獻回顧與研究目的 7 2-1 文獻回顧 7 2-2 觸媒駐焰器燃燒室之設計 9 2-3 研究目的 11 第三章 數值分析與方法 12 3-1 數值模型與方法 12 3-2 延遲點火計算 13 第四章實驗設備與方法 14 4-1實驗設備 14 4-1-1蜂巢式觸媒 14 4-1-2旁通式觸媒燃燒室 14 4-1-3空氣加熱設備 15 4-1-4觸媒與其下游氣相反應區的觀察 15 4-2氣源與燃料供應系統 15 4-3 量測系統 16 4-3-1溫度量測 16 4-3-2資料擷取系統 17 4-4實驗方法 17 4-4-1初步觸媒燃燒測試 18 4-4-2單一管道旁通式觸媒駐焰器燃燒室 18 第五章 結果與討論 20 5-1初步觸媒燃燒 20 5-2數值分析 21 5-2-1 延遲點火計算 21 5-2-2數值分析旁通式觸媒駐焰器燃燒室 21 5-3旁通式觸媒駐焰器燃燒室於單管之測試 22 第六章 結論與未來工作 28 6-1實驗結論 28 6-2未來工作 28 參考文獻 30 附錄 75 自述 76 表目錄 表一、Φ=0.2-0.25 Tpreheat=423(K) 不同H2、CO比例下之絕熱火焰溫度 35 表二、不同石英管徑下之旁通比 35 表三、Φ=0.25 V=10 m/sec 下游出口氣相反應區長度 36 表四、Φ=0.25 H2:CO=1:1 條件下,下游出口氣相反應區長度 36 表五、Φ=0.24 H2:CO=1:1 條件下,下游出口氣相反應區長度 37 表六、Φ=0.23 H2:CO=1:1 條件下,下游出口氣相反應區長度 37 圖目錄 圖1-1、反應活化能 38 圖2-1、多段式觸媒燃燒室之概念圖 39 圖2-2、Two-stage rich-catalytic lean-burn combustion 39 燃燒室之概念圖 39 圖2-3、Rich-Quick-Lean燃燒室之概念圖 40 圖2-4、旁通室觸媒駐焰器燃燒室之概念圖 40 圖3-1、數值模擬之說明圖 41 圖4-1、石英管示意圖 41 圖4-2、初步觸媒測試設備圖 42 圖4-3、旁通式觸媒燃燒室單管測試設備示意圖 43 圖5-1、初步觸媒測試 L=5 cm 44 圖5-2、初步觸媒測試 L=3 cm 44 圖5-3、初步觸媒測試 L=1 cm 45 圖5-4.CO、H2延遲點火時間圖 45 圖5-5.不同旁通比與壓縮比下之溫度分布 46 圖5-6.不同旁通比與壓縮比下反應物與生成物之分布圖,分別為H2、H2O、CO、CO2 47 圖5-7、6mm(B=3) Φ=0.25 H2:CO=8:2~2:8下游火焰影像 48 圖5-8、5mm(B=2)Φ=0.25 H2:CO=9:1~2:8下游火焰影像 49 圖5-9、4mm(B=1)Φ=0.25 H2:CO=9:1~2:8下游火焰影像 50 圖5-10、6mm(B=3)Φ=0.23 V=8,10,12,15,18 m/s 下游火焰影像 51 圖5-11、6mm(B=3)Φ=0.24 V=8,10,12,15,18 m/s 下游火焰影像 52 圖5-12、6mm(B=3)Φ=0.25 V=8,10,12,15,18 m/s 下游火焰影像 53 圖5-13、5mm(B=2)Φ=0.23 V=8,10,12,15,18 m/s 下游火焰影像 54 圖5-14、5mm(B=2)Φ=0.24 V=8,10,12,15,18 m/s 下游火焰影像 55 圖5-15、5mm(B=2)Φ=0.25 V=8,10,12,15,18 m/s 下游火焰影像 56 圖5-16、4mm(B=1)Φ=0.25 V=8,10,12,15,18 m/s 下游火焰影像 57 圖5-17、不同燃料成分下觸媒壁面溫度分布圖 58 6mm(B=3) Φ=0.25 V=10 m/s 58 圖5-18、不同燃料成分下觸媒壁面溫度分布圖 59 5mm(B=2) Φ=0.25 V=10 m/s 59 圖5-19、不同燃料成分下觸媒壁面溫度分布圖 60 4mm(B=1) Φ=0.25 V=10 m/s 60 圖5-20、不同速度下觸媒壁面溫度分布圖6mm(B=3) Φ=0.25 H2:CO=1:1 61 圖5-21、不同速度下觸媒壁面溫度分布圖6mm(B=3) Φ=0.24 H2:CO=1:1 61 圖5-22、觸媒壁面溫度分布圖6mm(B=3) Φ=0.23 H2:CO=1:1 62 圖5-23、觸媒壁面溫度分布圖5mm(B=2) Φ=0.25 H2:CO=1:1 62 圖5-24、觸媒壁面溫度分布圖5mm(B=2) Φ=0.24 H2:CO=1:1 63 圖5-25、觸媒壁面溫度分布圖5mm(B=2) Φ=0.23 H2:CO=1:1 63 圖5-26、6 mm(B=3)石英管中觸媒壁發光影像 64 圖5-27、5 mm(B=2)石英管中觸媒壁發光影像 65 圖5-28、4 mm(B=1)石英管中觸媒壁發光影像 66 圖5-29、5 mm(B=2)石英管H2:CO=1:1 OH化學發光分佈圖 67 圖5-30、5 mm(B=2)石英管H2:CO=6:4 OH化學發光分佈圖 67 圖5-31、5 mm(B=2)石英管H2:CO=7:3 OH化學發光分佈圖 68 圖5-32、5 mm(B=2)石英管H2:CO=8:2 OH化學發光分佈圖 68 圖5-335 mm(B=2)石英管H2:CO=9:1 OH化學發光分佈圖 69 圖5-34 6mm(B=3)石英管H2:CO=1:1 OH化學發光分佈圖 69 圖5-35 6mm(B=3)石英管H2:CO=6:4 OH化學發光分佈圖 70 圖5-36、6 mm(B=3) 石英管H2:CO=7:3 OH化學發光分佈圖 70 圖5-37、6 mm(B=3) 石英管H2:CO=8:2 OH化學發光分佈圖 71 圖5-38、6 mm(B=3) Φ=0.25 V=8、10、12、15 m/s 72 下游出口之溫度分佈圖 72 圖5-39、6 mm(B=3) Φ=0.25不同燃料比例下之下游出口之溫度分佈圖 73 圖5-40、旁通比B=2 Φ=0.25不同燃料比例下之下游出口之溫度分佈圖 74

    [1]Chao, Y.C., Chen, G.B., and Hsu, J.R., 2004, “Catalytic combustion of gasified biomass in a platinum monolith honeycomb reactor,” Catalysis Today, vol.83, pp.257-264.
    [2]Deutschmann, O., Maier, L. I., Riedel, U., Stroemman, A. H., and Dibble, R. W., 2000, “Hydrogen Assisted Catalytic Combustion of Methane on Platinum.” Catalysis Today, vol. 59, pp 141-150.
    [3]Etemad, S., Karim H., Smith L.L., and Pfefferle W.C., 1999, “Advanced technology catalytic combustor for high temperature ground power gas turbine applications,” Catalysis Today, vol. 47, pp.305-313.
    [4]Forsth M., Gudmundson F., Persson J.L., and Rosen A., 1999, “The Influence of a Catalytic Surface on the Gas-phase Combustion,” Combustion and Flame, vol.119, pp.144-153.
    [5]Groppi, G., Belloli, A., Tronconi, E., and Forzatti, P., 1995, “Analysis of multidimensional models of monolith catalysts for hybrid combustors.” AIChE Journal, Vol. 41, pp 2250-226.
    [6]Gumundson F., Persson J.L., Forsth M., Behrendt F., Kasemo B., and Rosen A., 1998, “OH Gas Phase Chemistry outside a Pt Catalyst” Journal of Catalysis, vol. 179, pp.420-430.
    [7]Hasan Karim, Lyle K., Smith Lance L., Shahrokh Etemad, Dutta P., Smith K., and William C. Pfefferle, 2003, “Advanced Catalytic Pilot for Low NOX Industrial Gas Turbines” Journal of Engineering for Gas Turbines and Power, vol. 125, pp. 879-884.
    [8]Harle H., Lehnert A., Metka U., Volpp H.R., Willms L., and Wolfrum J., 1999,“In situ detection and surface coverage measurements of CO during CO oxidation on polycrystalline platinum using sum frequency generation,” Appl. Phy. B, vol. 68, pp.567-572.
    [9]Hongyam Sun, Yang S.I., Jomaas G., and Law C.K., 2007, “High-pressure laminar flame speeds and kinetic modeling of carbon monoxide/hydrogen combustion”, Proceedings of the Combustion Institute, vol.31, pp.439-446.
    [10]Johansson E. Magnus, Jonny K.M. Danielsson, Eugenia Pocoroba, Eric D. Haralson, and Sven G. Jaras, 1999 , “Catalytic combustion of gasified Biomass over hexaaluminate catalysts : influence of palladium loading and ageing,” Applied Catalysis A: General , vol. 182, pp.199-208.
    [11]Laster W.R., 2005 ,“Development of a Catalytic Combustion for Fuel Flexible Turbines,” Presented at the 2005 Pittsburgh Coal Conference.
    [12]Lance L. Smith, Hasan Karim, Marco J. Castaldi, Shahrokh Etemad, and William Pfefferle C., 2006,“Rich-Catalytic Lean-burn combustion for fuel-flexible operation with ultra low emissions” Catalysis Today, vol. 117, pp. 438-446.
    [13]Lance L. Smith, Hasan Karim, Marco J. Castaldi, Shahrokh Etemad, and William C. Pfefferle, 2005, “Rich-Catalytic Lean-Burn Combustion for Low-Single-Digit NOx Gas Turbines,” Journal of Engineering for Gas Turbines and Power, vol. 127, pp27-35.
    [14]Michael L. Quick, and Kamitomai S., 1995, “Catalytic combustion reactor design and test results,” Catalysis Today, vol. 26, pp.303-308.
    [15]Rinnemo M., Kulginov D., Johansson S., Wong K.L., and Zhdanov V.P., 1997, “Catalytic ignition in the CO-O2 reaction on platinum : experiment and simulations,” Surface science, vol. 376, pp. 297-309.
    [16]Pfefferle W.c., and Pfefferle L.D., 1986, “Catalytically Stabilized Combustion,” Prog. Energy Combust. Sci. vol. 12, pp.25-41.
    [17]Pfefferle W.C., ,United States Patent ,NO. 5,452,574.
    [18]Sorab R. Vatcha, 1997, “Low-Emission Gas Turbine Using Catalytic Combustion, ” Energy Convers. Mgmt, vol. 38, pp.1327-1334.
    [19]Tomiaki Furuya, Kunihiko Sasaki, Yoshio Hanakata, Toshiyuki Ohhashi, Masahiko Yamada, Toshiaki Tsuchiya, and Yutaka Furuse, 1995, “Development of a hybrid catalytic combustion for a 1300℃ class gas turbine,” Catalysis Today, vol.26, pp.345-350.
    [20]Smooke, M. D., 1991, Reduced Kinetic “Mechanisms and Asymptotic Approximations for Methane-Air Flames. Lecture Notes in Physics, ” vol. 384, Springer-Verlag, pp 1-28.
    [21]Yong Seog Seo, Sung June Cho, Sung Kyu Kang, and Hyun Dong Shin, 2000, “Numerical studies of catalytic combustion in a catalytically stabilized combustor,” International Journal of Energy Research, pp.1049-1064.
    [22]Yuk Fai Tham, and Chen J. Y., 2006, “Numerical study of Rich Catalytic combustion of Syngas as a First stage in a Rich-Quick-Lean (RQL) Turbine System,” CST, 06-04-03.
    [23] 田俊宏,2004,“混合燃料特性之研究”,國立成功大學航空太空工程研究所碩士論文。
    [24] 許紘瑋,1998,“觸媒穩駐燃燒之初步研究”,國立成功大學航空太空工程研究所碩士論文。
    [25] 陳冠良,2005,“重質油氣化合成氣觸媒氣渦輪引擎之研發”,國立成功大學航空太空工程研究所碩士論文
    [26] 張仲翔,2005,“高壓觸媒燃燒之研究”,國立成功大學航空太空工程研究所碩士論文。
    [27]蔡銘晃,2000,“小型氣渦輪引擎觸媒燃燒室之研究”,國立成功大學航空太空工程研究所碩士論文。
    [28] 謝維昇,2003,“觸媒氣渦輪引擎原形之發展”,國立成功大學航空太空工程研究所碩士論文。

    下載圖示 校內:2009-08-27公開
    校外:2009-08-27公開
    QR CODE