| 研究生: |
何基再 Ho, Chi-Tsai |
|---|---|
| 論文名稱: |
氣化合成氣旁通式觸媒駐焰燃燒室於微型氣渦輪引擎之研究 A Study of Bypassed Catalytic Combustion for Syn-gas Application in Miniature Gas Turbines |
| 指導教授: |
趙怡欽
Chao, Yei-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 旁通比 、氣化合成氣 、觸媒燃燒 、微型氣渦輪 |
| 外文關鍵詞: | Syn-Gas, Bypass ratio, Catalytic Combustion, Miniature Gas Turbine |
| 相關次數: | 點閱:96 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
針對日益受到重視的低熱值氣化合成氣於微型氣渦輪引擎的應用所引起的問題,吾人特別提出旁通式氣化合成氣觸媒駐焰燃燒室的概念,利用並行非觸媒旁通管道預熱並旁通部分燃料氣體,而與經過觸媒管道的高溫氣體迅速混合點燃穩駐於下游氣相反應區並持續燃燒釋放熱量,燃燒室中的觸媒用來點燃以及提高氣體溫度以穩駐下游氣相燃燒。吾人首先利用數值模擬的方法證實旁通觸媒燃燒室的可行性,同時使用單管旁通式觸媒燃燒室也觀察到下游氣相反應區。接著觀察不同燃料成分與流體速度的差異,量測觸媒壁面與出口溫度,更進一步利用化學發光影像技術,觀察OH的分布情形。在結果中發現氣化合成氣中的H2先被觸媒表面反應點燃,接著引起靠近壁面的CO氣相反應並且延續到下游。在足夠的觸媒反應熱下,旁通比是決定穩駐觸媒出口下游勻相氣相反應之重要因素,大部分氣化合成氣中之CO是在此反應中進行氧化反應。另外,隨著燃料中H2比例的增加,不僅壁面溫度會增加同時也會幫助下游氣相反應區穩駐。
In view of the increasing global concern of the depletion of the convenient fossil fuels, combustion of low heating value fuels attracts intensive attention of the research community. For efficient and clean applications, syngas from gasified low heating value fuels are used for power generation in catalytic gas turbines. The contradicting problems of temperature limitation due to catalyst sintering and the gas turbine efficiency lead to greatly sacrifice in the overall efficiency in the current catalytic gas turbines. In the present study, we propose the concept of a bypass-catalytic-stabilization combustor for use in the miniature syngas gas turbines. By placing the non-catalyst bypass channels next to the catalyst channel, some of the fuel-air mixture is bypassed and preheated in the channel and the preheated mixture mixes with the hot gas from the catalytic channel and ignites and burns stably in the downstream gas-phase reaction zone. In this study, firstly, numerical simulations are performed in a syngas catalytic miniature gas turbine combustor with various parameters of bypass ratios and pressure ratios to evaluate the feasibility of the concept. Secondly, the catalytic reaction and gas-phase combustion characteristics are observed by using the bypassed single catalytic channel combustor. Temperature measurements of the catalytic surface and gas-phase reaction zone under different velocities and fuel compositions are performed. The distributions of OH radicals in the reaction zones are measured by using chemiluminescence-imaging techniques. The results show that H2 of the syngas can first be ignited by surface catalytic reaction at the channel entrance and enhance the gas-phase reaction of CO near the wall and downstream. Bypass ratio dominates the supplies of combustible mixture downstream of the catalyst outlet to stabilize the following gas phase reactions in the homogeneous gas-phase reaction zone when the energy release from catalyst and bypass channels is sufficient. CO component of the syngas is mostly consumed in the gas-phase reaction in this region. In addition, we observe that not only the temperature of catalytic surface is increased but also the gas-phase reaction is enhanced with increasing the content of H2.
[1]Chao, Y.C., Chen, G.B., and Hsu, J.R., 2004, “Catalytic combustion of gasified biomass in a platinum monolith honeycomb reactor,” Catalysis Today, vol.83, pp.257-264.
[2]Deutschmann, O., Maier, L. I., Riedel, U., Stroemman, A. H., and Dibble, R. W., 2000, “Hydrogen Assisted Catalytic Combustion of Methane on Platinum.” Catalysis Today, vol. 59, pp 141-150.
[3]Etemad, S., Karim H., Smith L.L., and Pfefferle W.C., 1999, “Advanced technology catalytic combustor for high temperature ground power gas turbine applications,” Catalysis Today, vol. 47, pp.305-313.
[4]Forsth M., Gudmundson F., Persson J.L., and Rosen A., 1999, “The Influence of a Catalytic Surface on the Gas-phase Combustion,” Combustion and Flame, vol.119, pp.144-153.
[5]Groppi, G., Belloli, A., Tronconi, E., and Forzatti, P., 1995, “Analysis of multidimensional models of monolith catalysts for hybrid combustors.” AIChE Journal, Vol. 41, pp 2250-226.
[6]Gumundson F., Persson J.L., Forsth M., Behrendt F., Kasemo B., and Rosen A., 1998, “OH Gas Phase Chemistry outside a Pt Catalyst” Journal of Catalysis, vol. 179, pp.420-430.
[7]Hasan Karim, Lyle K., Smith Lance L., Shahrokh Etemad, Dutta P., Smith K., and William C. Pfefferle, 2003, “Advanced Catalytic Pilot for Low NOX Industrial Gas Turbines” Journal of Engineering for Gas Turbines and Power, vol. 125, pp. 879-884.
[8]Harle H., Lehnert A., Metka U., Volpp H.R., Willms L., and Wolfrum J., 1999,“In situ detection and surface coverage measurements of CO during CO oxidation on polycrystalline platinum using sum frequency generation,” Appl. Phy. B, vol. 68, pp.567-572.
[9]Hongyam Sun, Yang S.I., Jomaas G., and Law C.K., 2007, “High-pressure laminar flame speeds and kinetic modeling of carbon monoxide/hydrogen combustion”, Proceedings of the Combustion Institute, vol.31, pp.439-446.
[10]Johansson E. Magnus, Jonny K.M. Danielsson, Eugenia Pocoroba, Eric D. Haralson, and Sven G. Jaras, 1999 , “Catalytic combustion of gasified Biomass over hexaaluminate catalysts : influence of palladium loading and ageing,” Applied Catalysis A: General , vol. 182, pp.199-208.
[11]Laster W.R., 2005 ,“Development of a Catalytic Combustion for Fuel Flexible Turbines,” Presented at the 2005 Pittsburgh Coal Conference.
[12]Lance L. Smith, Hasan Karim, Marco J. Castaldi, Shahrokh Etemad, and William Pfefferle C., 2006,“Rich-Catalytic Lean-burn combustion for fuel-flexible operation with ultra low emissions” Catalysis Today, vol. 117, pp. 438-446.
[13]Lance L. Smith, Hasan Karim, Marco J. Castaldi, Shahrokh Etemad, and William C. Pfefferle, 2005, “Rich-Catalytic Lean-Burn Combustion for Low-Single-Digit NOx Gas Turbines,” Journal of Engineering for Gas Turbines and Power, vol. 127, pp27-35.
[14]Michael L. Quick, and Kamitomai S., 1995, “Catalytic combustion reactor design and test results,” Catalysis Today, vol. 26, pp.303-308.
[15]Rinnemo M., Kulginov D., Johansson S., Wong K.L., and Zhdanov V.P., 1997, “Catalytic ignition in the CO-O2 reaction on platinum : experiment and simulations,” Surface science, vol. 376, pp. 297-309.
[16]Pfefferle W.c., and Pfefferle L.D., 1986, “Catalytically Stabilized Combustion,” Prog. Energy Combust. Sci. vol. 12, pp.25-41.
[17]Pfefferle W.C., ,United States Patent ,NO. 5,452,574.
[18]Sorab R. Vatcha, 1997, “Low-Emission Gas Turbine Using Catalytic Combustion, ” Energy Convers. Mgmt, vol. 38, pp.1327-1334.
[19]Tomiaki Furuya, Kunihiko Sasaki, Yoshio Hanakata, Toshiyuki Ohhashi, Masahiko Yamada, Toshiaki Tsuchiya, and Yutaka Furuse, 1995, “Development of a hybrid catalytic combustion for a 1300℃ class gas turbine,” Catalysis Today, vol.26, pp.345-350.
[20]Smooke, M. D., 1991, Reduced Kinetic “Mechanisms and Asymptotic Approximations for Methane-Air Flames. Lecture Notes in Physics, ” vol. 384, Springer-Verlag, pp 1-28.
[21]Yong Seog Seo, Sung June Cho, Sung Kyu Kang, and Hyun Dong Shin, 2000, “Numerical studies of catalytic combustion in a catalytically stabilized combustor,” International Journal of Energy Research, pp.1049-1064.
[22]Yuk Fai Tham, and Chen J. Y., 2006, “Numerical study of Rich Catalytic combustion of Syngas as a First stage in a Rich-Quick-Lean (RQL) Turbine System,” CST, 06-04-03.
[23] 田俊宏,2004,“混合燃料特性之研究”,國立成功大學航空太空工程研究所碩士論文。
[24] 許紘瑋,1998,“觸媒穩駐燃燒之初步研究”,國立成功大學航空太空工程研究所碩士論文。
[25] 陳冠良,2005,“重質油氣化合成氣觸媒氣渦輪引擎之研發”,國立成功大學航空太空工程研究所碩士論文
[26] 張仲翔,2005,“高壓觸媒燃燒之研究”,國立成功大學航空太空工程研究所碩士論文。
[27]蔡銘晃,2000,“小型氣渦輪引擎觸媒燃燒室之研究”,國立成功大學航空太空工程研究所碩士論文。
[28] 謝維昇,2003,“觸媒氣渦輪引擎原形之發展”,國立成功大學航空太空工程研究所碩士論文。