簡易檢索 / 詳目顯示

研究生: 柯永章
ko, yung-chang
論文名稱: 多噴口燃燒器之氣態火焰分析
Gaseous Flames in Multi-Port Burners
指導教授: 林大惠
Lin, Ta-Hui
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 200
中文關鍵詞: 擴散火焰多噴口燃燒器氣態火焰
外文關鍵詞: Gaseous Flame, Multi-Port Burners
相關次數: 點閱:67下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要針對三個研究主題,分別為多噴口噴流擴散火焰、家用瓦斯爐及油氣焚化系統進行實驗及理論分析探討。
    在多環同軸噴流擴散火焰的研究中,吾人嘗試以理論推導的方式導出同軸多環等速與非等速噴流擴散火焰之火焰面一般解。利用分離變數法和漸進微擾法,將物種方程式與能量方程式所耦合之統御方程式配合多環噴口邊界條件求出火焰面方程式。由結果可知,軸向擴散項、各環出口濃度、各環出口速度、各環半徑比、各環Lewis數和Peclet數會同時影響火焰高度和結構。
    在探討天然氣組成成分不同,造成熱值改變,對家用瓦斯爐的影響研究中。主要針對家用瓦斯爐,實際使用不同熱值之天然氣,改變其主要設計參數(焰孔尺寸、噴嘴口徑、焰孔間距和加熱面高度)並配合不同操作條件(熱輸入、瓦斯供應壓力、焰孔負載、一次空氣率),分析火焰燃燒特性、加熱效率和污染物排放的變化,以因應天然氣熱值改變,提出適切可行的解決方法和技術。由結果可知,降低燃氣供給流量、適當的負載高度(降低高度)、適當的燃料開度(不宜在最大開度)與適當的內外環二次空氣量下,高熱值天然氣確實可取代低熱值天然氣使用。
    在考慮大區域油污整治工程的需要,針對量大、壓力小、組成變化大的回收釋出可燃氣體,吾人嘗試建立油氣焚化技術,利用燃燒焚化方式加以有效去除。研究中所提出的油氣焚化技術係以燃燒焚化方式去除可燃氣體,利用自然吸入一次空氣法及輔助燃燒法,兩者併行將可燃氣體完全燃燒,避免二次污染和二次公害。此外,為避免因可燃氣中含氧比例的變化,導致回火和爆炸的危險,建立適當、安全可靠的回火阻斷系統、預警系統和標準安全作業程序等安全措施。研究中將對系統進行測試,探討系統操作條件對其火焰燃燒特性的影響。進而篩選出最佳的操作條件,以進行迅速、安全且合乎環保的油氣燃燒焚化。

    The objective of this research is to identify the flame characteristics in a multi-port burner. The study is divided into three parts: diffusion flames in a multi-port burner, design of domestic gas stove for burning LNG with various heating values, and an investigation on incineration technology of oil gas.
    The influence of stream concentrations, stream velocities, preferential diffusion and Peclet number effect on the flame structure in a multi-port burner is theoretically and experimentally studied in the first part. A general solution of normal and inverse diffusion flame configurations in a multi-port burner is obtained with the inclusion of the effects of axial diffusion and unequal stream velocities. The theoretical results show that not only the flame height but also the flame structure is affected by the Peclet number. Flame configurations can be predicted well by including temperature effect in calculating the Peclet number. For relatively weak (or strong) flame intensity, the prediction of flame configurations agrees well with the experimental results if a lower (or higher) temperature is used.
    The heating value of a fuel, which depends on its composition, strongly affects burner performance. In the second part, we aim to assess the effects of changes in gas composition on burner performance and to propose suitable design or operational guidelines for a domestic gas stove burning natural gas with various heating values. The influence of five significant parameters; namely, gas composition, primary aeration, gas flow rate (heat input), gas supply pressure, and loading height, on the thermal efficiency and CO emissions were reported and discussed. Using the natural gas with higher heating value results in a decrease in thermal efficiency (due to higher thermal input) and an increase in CO emission (caused by incomplete combustion). These problems can be significantly improved by decreasing the gas pressure to a suitable value, by enlarging the primary aeration to a favorable level, by selecting a proper thermal input, or by optimizing the heating height.
    In the third part, we set up and operated an incinerator system to provide safe burning and clean emissions for oil gas generated during the recovery process of an oil spill. Since the proper design of a gas burner capable of burning oil gas at various compositions and supply rates is of great significance, we aspired to develop an incinerator system equipped with necessary control units to achieve safe, easy, fast, and efficient operation. The vertical-type incinerator consisted of five oil gas burners with entrained primary air, a pilot burner, and an auxiliary burner. After some long-term operation, we found the newly designed gas burner satisfactory for burning oil gas at various compositions and supply rates during the recovery process of oil spill. The performance and emissions of the incinerator system will be described in detail in this study.

    目 錄 總目錄.......................................................................................... I 表目錄.......................................................................................... V 圖目錄.......................................................................................... VI 符號說明……………………………………………………………… XII 一、前言........................................................................................ 1 1-1 多噴口噴流火焰.............................................................. 1 1-2 研究目的........................................................................ 3 1-2-1 多噴口噴流擴散火焰.............................................. 4 1-2-2 家用瓦斯爐因應天然氣熱值改變之研究與設計..... 4 1-2-3 油氣焚化技術研究.................................................. 5 二、多噴口噴流擴散火焰............................................................. 7 2-1 文獻回顧........................................................................ 7 2-1-1 同軸標準擴散火焰……………….…….................... 7 2-1-2 反置標準擴散火焰……….….………..…………….. 9 2-2 理論推導........................................................................ 10 2-2-1 幾何描述…………………………………………….. 10 2-2-2 基本假設…………………………………………….. 11 2-2-3 統御方程式………………………………………….. 11 2-2-4 耦合方程式………………………………………….. 14 2-2-5 邊界條件…………………………………………….. 15 2-2-6 多管噴流火焰之通解……………………………….. 15 2-3 實驗設備、方法與步驟................................................... 17 2-3-1 擴散火焰燃燒器系統……………………………….. 17 2-3-2 氣體供應系統……………………………………….. 18 2-3-3 影像處理系統……………………………………….. 18 2-3-4 參數設定…………………………………………….. 19 2-3-5 火焰型態觀測……………………………………….. 20 2-4 結果與討論.................................................................... 20 2-4-1 雙環同軸等速噴流火焰…………………………….. 20 2-4-2 三環同軸等速噴流………………………………….. 25 2-4-3 三環同軸非等速噴流……………………………….. 32 2-5 結論………………………................................................ 36 三、多噴口噴流擴散火焰之優先擴散效應.................................... 38 3-1 文獻回顧.……................................................................. 38 3-2 理論推導........................................................................ 39 3-2-1 等效優先擴散....................................................... 39 3-2-2 非等效優先擴散................................................... 40 3-3 結論………………………................................................ 48 四、家用瓦斯爐因應天然氣熱值改變之研究與設計………………. 50 4-1 文獻回顧.……................................................................. 50 4-2 實驗設備及量測儀器…………………………………….. 52 4-2-1 瓦斯爐燃燒器系統……………………………………. 53 4-2-2 加熱效率與廢氣量測系統……………………………. 54 4-2-3 LNG調壓器與壓力校正系統………………………….. 54 4-2-4 LNG流量校正系統…………………………………….. 55 4-2-5 溫度量測系統…………………………………………. 55 4-2-6 濃度量測系統…………………………………………. 56 4-2-7 火焰結構分析與影像處理系統………………………. 57 4-3 實驗方法及步驟…………………………………………….. 57 4-3-1 瓦斯爐調整的方法和技術……………………………. 58 4-3-2 瓦斯爐實驗方法與步驟………………………………. 65 4-4 結果與討論.................................................................... 69 4-4-1 燃料流率分析…………………………..……………... 69 4-4-2 瓦斯爐火焰燃燒形態和穩定性分析……………..…… 70 4-4-3 瓦斯爐火焰燃燒效率及其污染物排放分析…………. 80 4-5 結論………………………................................................ 86 五、油氣焚化技術研究.................................................................... 89 5-1 文獻回顧……................................................................. 89 5-1-1 事件背景………………………………………………. 89 5-1-2 可燃氣除去技術....……………………………………. 90 5-2 研究方法及步驟……………………………………………. 91 5-2-1 油氣焚化方法………………………………………….. 93 5-2-2 油氣焚化系統………………………………………….. 94 5-2-3 火焰型態觀測設備…………………………………….. 98 5-2-4 廢氣分析儀…………………………………………….. 98 5-2-5 實驗步驟……………………………………………….. 98 5-3 結果與討論.................................................................... 100 5-3-1 初步實驗測試…………………………………………. 100 5-3-2 油氣焚化系統標準操作程序…………………………. 102 5-3-3 油氣焚化系統之建立與測試…………………………. 103 5-3-4 火焰型態觀察…………………………………………. 105 5-3-5 廢氣分析及溫度量測…………………………………. 106 5-4 結論………………………................................................ 109 六、總結….…………………………………………………………… 111 七、參考文獻................................................................................. 114 八、表格........................................................................................ 121 九、圖形.……………………………………………………………… 130

    1. Jones, H.R.N., “The Application of Combustion Principles to Gas Burner Design,” British Gas, 1989.
    2. 賴耿陽譯著,瓦斯爐燃燒裝置實務,復漢出版社,民國七十五年。
    3. William P. Partridge Jr and Normand M. Laurendeau, “Nitric Oxide Formation by Inverse Diffusion Flames in Staged-Air Burners,” Fuel, Vol. 74, pp. 1424-1430, 1995.
    4. Sunderland, P.B., Mendelson, B.J., Yuan, Z.G., and Urban, D.L., “Shapes of Buoyant and Nonbuoyant Laminar Jet Diffusion Flames,” Combust. Flame, Vol. 116, pp.376-386, 1999.
    5. 吳瑞禮譯著,瓦斯爐具基礎學,民國七十五年。
    6. Peters, N., “Partially premixed diffusion flamelets in non-premixed turbulent combustion,” Twentieth Symposium (International) on Combustion, The Combustion Institute, pp.353-360, 1984.
    7. Law, C.K., “Dynamics of Stretched Flames,” Twenty-second Symposium (International) on Combustion, The Combustion Institute, pp.1381-1402., 1988.
    8. Burke, S.P. and Schumann, T.E.W., “Diffusion Flame,” Ind. Eng. Chem., Vol. 20, pp.998-1004, 1928.
    9. Wohl, K., Gazley, C. and Kapp, N., “Diffusion Flames,” Third Symposium (International) on Combustion, The Combustion Institute, pp. 288-300, 1949.
    10. Barr, J., “Diffusion Flames,” Fourteenth Symposium (International) on Combustion, The Combustion Institute, pp. 765-771, 1953.
    11. Savage, L.D., “The Enclosed Laminar Diffusion Flame,” Combust. Flame, Vol. 6, pp. 77-87, 1962.
    12. Jones, J.M. and Rosenfeld, J.L.J., “A Model for Sooting in Diffusion Flames,” Combust. Flame, Vol. 19, pp. 427-434, 1972.
    13. Roper, F.G., “The Prediction of Laminar Jet Diffusion Flame Sizes: Part 1. Theoretical Model,” Combust. Flame, Vol. 29, pp. 219-226, 1977.
    14. Roper, F.G., “The Prediction of Laminar Jet Diffusion Flame Sizes: Part 2. Experimental Verification,” Combust. Flame, Vol. 29, pp. 227-234, 1977.
    15. Mitchell, R.E., Sarofim A.F. and Clomburg, L.A., “Experimental and Numerical Investigation of Confined Laminar Diffusion Flames,” Combust. Flame, Vol. 37, pp. 227-244, 1980.
    16. Chung, S.H. and Law, C.K., “Burke-Schumann Flame with Streamwise and Preferential Diffusion,” Combust. Sci. Tech., Vol. 37, pp. 21-46, 1984.
    17. Im, H.G., Law, C.K., and Axelbaum, R.L., “Opening of the Burke-Schumann flame tip and the effects of curvature on diffusion flame extinction,” Proc. Combust. Inst. 23, pp. 551-558, 1990.
    18. Jia, X. and Bilger, R.W., “The Burke-Schumann Diffusion Flame with Zero Net Flux Boundary Conditions,” Combust. Sci. Tech., Vol. 99, pp. 371-376, 1994.
    19. Chao, B.H., and Axelbaum, R.L., “Triaxial Burke-Schumann flames with applications to flame synthesis,” Combust. Sci. Tech., Vol. 156, pp. 291-314, 2000.
    20. Friend, J.N., “The Chemistry of Combustion,” Gurney & Jackson, London, p34, 1922.
    21. Authur, J.B. and Napier, D.H., “Formation of Carbon and Related Materials in Diffusion Flames,” Fifth Symposium (International) on Combustion, The Combustion Institute, pp. 303-315, 1955.
    22. Weller, A.E., “Final Report on Investigation of Gravity-Fed Vaporizing Puddling Type Burners,” Battelle Me,orial Institute, 1958.
    23. Walker, J., Scientific American, pp. 192-200, 1979.
    24. Kuang Tsai Wu and Robert H. Esenhigh, “Mapping and Structure of Inverse Diffusion Flames of Methane,” Twentieth Symposium (International) on Combustion, The Combustion Institute, pp. 1925-1932, 1984.
    25. Toshimi Takagi, Zhe Xu and Masaharu Komiyama, “Preferential Diffusion Effects on the Temperature in Usual and Inverse Diffusion Flames,” Combust. Flame, Vol. 106, pp. 252-260, 1996.
    26. William P. Partridge, JR. John R. Reisel and Normand M. Laurendeau, “Laser-Saturated Fluorescence Measurements of Nitric Oxide in an Inverse Diffusion Flame,” Combust. Flame, Vol. 116, pp. 282-290, 1996.
    27. Cavaliere, A. and Ragucci, R., “Gaseous Diffusion Flames: Simple Structures and their Interaction,” Progress in Energy and Combustion Science, Vol. 27, pp. 547-585, 2001.
    28. Kaplan, C.R. and Kailasanath, K., “Flow-field Effects on Soot Formation in Normal and Inverse Methane-Air Diffusion Flames,” Combust. Flame, Vol. 124, pp.275-294, 2001.
    29. Lewis, B., and von Elbe, G., “Combustion, Flames and Explosions of Gases,” Academic Press, N.Y., 1961.
    30. Sivashinsky, G.I., “Diffusional-thermal theory of cellular flames,” Combust. Sci. Tech., Vol. 15, pp.137-146, 1977.
    31. Law, C.K., Ishizuka, S. and Mizomoto, M., “Lean-limit extinction of propane/air mixtures in the stagnation-point flow,” Eighteenth Symposium (International) on Combustion, The Combustion Institute, pp. 1791-1798, 1981.
    32. Tsuji, H. and Yamaoka, I, “An experimental study of extinction of near-limit flames in a stagnation flow,” First Specialists Meeting (international) of Combustion Institute, Bordeaux, France, 1981.
    33. Ishizuka, S., Miyasaka, K. and Law, C.K., “Effects of heat loss, preferential diffusion, and flame stretch on flame-front instability and extinction of propane/air mixtures,” Combust. Flame, Vol. 45, pp.293-308, 1982.
    34. Law, C.K., Ishizuka, S. and Cho, P., “On the opening of premixed Bunsen flame tips,” Combust. Sci. Tech., Vol. 28, p.89, 1982.
    35. Law, C.K. and Chung, S.H., “Steady state diffusion flame structure with Lewis number variations,” Combust. Sci. Tech., Vol. 29, pp.129-145, 1982.
    36. Chan, W.Y. and T’ien, J.S., “An experiment on spontaneous flame oscillation prior to extinction,” Combust. Sci. Tech., Vol. 18, pp.139-143, 1978.
    37. Ishizuka, S., and Tsuji, H., “An experimental study of effect of inert gases on extinction of laminar diffusion flames,” Eighteenth Symposium (International) on Combustion, The Combustion Institute, pp. 695-703, 1981.
    38. Junus, R., Stubington, J.F., Sergeant, G.D., “The Effects of Design Factors on Emissions from Natural Gas Cooktop Burners,” Inter. J. Environmental Studies, Vol.45, pp. 101-121, 1994.
    39. Ashman, P.J., Junus, R., Stubington, J.F., Sergeant, G.D., “The Effects of Load Height on The Emissions from a Natural Gas-Fired Domestic Cooktop Burner,” Combust. Sci. Tech., Vol.103, pp.283-298, 1994.
    40. Stubington, J.F., Beashel, G., Murphy, T., Junus, R., Ashman, P.J., and Sergeant, G.D., “Emissions and Efficiency from Prodction Cooktop Burners Firing Natural Gas,” International of The Institute of Energy, Vol.67, pp.143-155, 1994.
    41. Sergeant, G.D., Stubington, J.F., Beashel, G., Murphy, T., Ashman, P.J., and Tas, I., “Methodology for The Simultaneous Measurement of Emissions and Efficiency for Natural Gas-Fired Cooktop Burners,” Intern. J. Environmental Studies, Vol.48, pp.117-133, 1995.
    42. Silver, R.S., Inst. Gas Eng. Gas Res. Board Comm. GRB 39/23, 1984.
    43. Waight, J.F., Trans. Inst. Gas Eng. Vol.100, p.684, 1950.
    44. Von Elbe, G. and Grumer, J., Indust. Eng. Chem. Vol.40, p.1123, 1948.
    45. Simmonds, W.A., Trans. Inst. Gas. Eng. Vol.104, p.557, 1954.
    46. Prigg, J.A., Br. Jun. Gas Assoc. Joint Proceed., Vol.38, p.165. , 1954.
    47. Francis, W. E., J. Ins. Gas Eng., Vol. 4, p.399, 1964.
    48. 中國國家標準CNS-13605,家庭用燃氣器具試驗法,民國七十年修訂。
    49. 中國國家標準CNS-3660,液化石油氣台爐,民國八十二年修訂。
    50. Hussein, M., Jin, M., and Weaver J.W., “Development and verification of a screening model for surface spreading of petroleum,” Journal of Contaminant Hydrology, Vol. 57, pp. 281-302, 2002.
    51. Mackay, D. and Mohtadi, M., “The area affected by oil spills on land,” Canadian Journal of Chemical Engineering, Vol. 53, No. 4, pp. 140-143, 1975.
    52. United State Environmental Protection Agency (USEPA), “Oil spill notification, Response, and Recovery,” The National Response Center, Washington, DC, 1998.
    53. Khan, F.I., and Ghoshal, A.Kr., “Removal of volatile organic compounds from polluted air,” Journal of Loss Prevention in the Process Industries, Vol. 13, pp.527-545, 2000.
    54. Marks, J.R. and Rhoads, T., “Planning saves time and money, when installing VOC controls,” Chemical Processing, Vol. 5, p42, May, 1991.
    55. William, J.C., and Lead, P.E., “ VOC control strategies in plant design,” Chemical Processing: Project Engineering Annual, pp. 44, 1997.
    56. AIChE, “Current and potential future industrial practices for reducing and controlling volatile organic compounds,” New York, Center for Waste Reduction Technologies, AIChE, 1992.
    57. Ruddy, E.N. and Caroll, L.A., “Select the best VOC control strategy,” Chemical Engineering Progress, Vol. 7, pp. 28, July, 1993.
    58. Cudahy, J.J. and Helsel, R.W., “Removal of products of incomplete combustion with carbon,” Waste Management, Vol. 20, pp. 339-345, 2000.
    59. Kirtland, B.C. and Aelion, C.M., “Pertoleum mass removal from low permeability sediment using air sparging/soil vapor extraction: impact of continuous or plused operation,” Journal of Contaminant Hydrology, Vol. 41, pp. 367-383, 2000.

    下載圖示 校內:2014-07-12公開
    校外:2019-07-12公開
    QR CODE