簡易檢索 / 詳目顯示

研究生: 許婉容
Syu, Wan-Rong
論文名稱: 文字探勘運用於民眾參與特性解析
Analysis the Characteristics of Public Participation Using Text Mining
指導教授: 張學聖
Chang, Hsueh-Sheng
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 都市計劃學系
Department of Urban Planning
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 86
中文關鍵詞: 文字探勘都市計畫民眾參與
外文關鍵詞: Text Mining, Public Participation
相關次數: 點閱:119下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 空間規劃思潮之演變,轉向討論民眾參與規劃之功能與重要性,除民眾可充分獲得規劃資訊,進而與規劃者溝通外,也為民眾提供更多參與機會,創造願景實踐的可能性。臺灣方面雖有透過制定相關法規來保障民眾參與規劃之權利,然而其仍具有參與時機過晚且不足、參與門檻高,以及陳情意見多反應私利,無法為都市整體法發展提供有效建議等問題。而近年來由於網路以及通訊技術之發展,產生了與以往不同之參與形式,透過網路或移動設備之民眾參與,克服了傳統參與形式之短處,降低了民眾參與門檻,涵蓋更廣泛之參與者,且所獲取之數據更能突顯在地知識,內容上為著重廣泛的社會與環境目標,更能回應都市計畫重視公益性之內涵。此外,文字探勘於處理大量且即時數據上具有其優勢與客觀性,近年來開始大量運用於社會人文學領域,並於都市議題研究中主要運用於都市治理與意見挖掘。故本研究欲從社群媒體作為民眾參與意見數據源之角度切入,運用文字探勘分析法檢視都市計畫陳情意見與社群媒體民眾意見等兩種不同意見來源,對於關注議題之廣度、公私益性,對議題態度等內容特性差異,討論多元民眾參與來源之可能。
    經由文字探勘結果發現,於討論議題上,陳情意見內容較偏重於個人土地利益與法律權益問題,談論主題間差異程度並未如社群媒體意見高;而社群媒體討論議題則較為廣泛,各主題間差異性大,較易判別各主題所關注重點,除了涵蓋了關於個人土地利益、法律權益等個人利益外,討論了環境災害、歷史文化等議題也是社群媒體意見所關注之焦點。情感分析方面,兩種意見來源對於個人權益之損失皆呈負向情緒表達,於正向情緒部份為民眾認為應積極爭取獲得之權利,然而社群媒體更另外關注了都市計劃對於城市未來發展之期盼。

    The purpose of this study is to explore the differences in the characteristics of the issues concerned by people's opinions and social media opinions in urban planning and to explain the difference in the breadth of issues and public and private interests between the two to discuss the possibility of incorporating diverse public opinion sources. The research uses topic modeling and sentiment analysis in the text mining method to mine opinion characteristics. The research results found that the content of people's opinions is more focused on the private interests of personal land, while the social media opinions are more concerned about the issues. It is more extensive and focuses more on the city's overall social and environmental development. The research conclusions are: (1) The content characteristics of the submitted opinions reflect the behavior of individuals who place more emphasis on their land interests in the research results; (2) The social media opinions in the research results present a multi-level and more overall public welfare. (3) There is a gap between the content characteristics of submitted opinions and social media opinions due to the logic of collective action and the type of participation.

    第一章 緒論 1 一、研究背景與動機 1 二、研究目的 3 三、研究流程 4 第二章 文獻回顧 5 一、空間規劃演變與臺灣都市規劃民眾參與 5 二、用戶生成內容 9 三、應用社群媒體於都市規劃 13 四、文字探勘 17 第三章 研究設計 29 一、實證地區 29 二、研究設計與內容 32 三、研究方法 38 第四章 研究結果 46 一、最佳主題數計算 46 二、主題建模結果 49 三、情感分析結果 58 四、結果與討論 60 第五章 結論與建議 62 一、結論 62 二、研究限制與建議 63 參考文獻 65 附錄 72

    Abalı, G., Karaarslan, E., Hürriyetoğlu, A., & Dalkılıç, F. (2018). Detecting citizen problems and their locations using twitter data. Paper presented at the 2018 6th International Istanbul Smart Grids and Cities Congress and Fair (ICSG).
    Abdul-Rahman, M., Chan, E. H., Wong, M. S., Irekponor, V. E., & Abdul-Rahman, M. O. (2021). A framework to simplify pre-processing location-based social media big data for sustainable urban planning and management. Cities, 109, 102986.
    Arun, R., Suresh, V., Veni Madhavan, C., & Murthy, N. (2010). On finding the natural number of topics with latent dirichlet allocation: Some observations. Paper presented at the Pacific-Asia conference on knowledge discovery and data mining.
    Albino, V., Berardi, U., & Dangelico, R. M. (2015). Smart Cities: Definitions, Dimensions, Performance, and Initiatives. Journal of Urban Technology, 22(1), 3-21. doi:10.1080/10630732.2014.942092
    Ballas, D. (2013). What makes a ‘happy city’? Cities, 32, S39-S50. doi:10.1016/j.cities.2013.04.009
    Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. the Journal of machine Learning research, 3, 993-1022.
    Cai, M. (2021). Natural language processing for urban research: A systematic review. Heliyon, 7(3), e06322. doi:10.1016/j.heliyon.2021.e06322
    Cao, J., Xia, T., Li, J., Zhang, Y., & Tang, S. (2009). A density-based method for adaptive LDA model selection. Neurocomputing, 72(7-9), 1775-1781.
    Chen, H., & Hsu, P.-H. (2020). Data Mining as a User-oriented Tool in Participatory Urban Design.
    Chen, W.-F., & Ku, L.-W. (2016). Utcnn: a deep learning model of stance classificationon on social media text. arXiv preprint arXiv:1611.03599.
    Chen, Y., Silva, E. A., & Reis, J. P. (2021). Measuring policy debate in a regrowing city by sentiment analysis using online media data: A case study of Leipzig 2030. Regional Science Policy & Practice, 13(3), 675-692.
    Chuang, J., Manning, C. D., & Heer, J. (2012). Termite: Visualization techniques for assessing textual topic models. Paper presented at the Proceedings of the international working conference on advanced visual interfaces.
    Deveaud, R., SanJuan, E., & Bellot, P. (2014). Accurate and effective latent concept modeling for ad hoc information retrieval. Document numérique, 17(1), 61-84.
    Estévez-Ortiz, F.-J., García-Jiménez, A., & Glösekötter, P. (2016). An application of people’s sentiment from social media to smart cities. Profesional de la Información, 25(6), 851-858.
    Evans-Cowley, J., & Hollander, J. (2010). The new generation of public participation: Internet-based participation tools. Planning Practice & Research, 25(3), 397-408.
    Fenglong, W., Qianmin, C., Yanyan, X., & Yungang, L. (2012). Communicative Planning Theory: Introduction, Criticism and Inspiration [J]. Urban Planning International, 6, 82-90.
    Forester, J. (1987). Planning in the face of conflict: Negotiation and mediation strategies in local land use regulation. Journal of the American Planning Association, 53(3), 303-314.
    Friedmann, J. (1989). Planning in the public domain: discourse and praxis. Journal of Planning Education and Research, 8(2), 128-130.
    Gao, S., Liu, Y., Kang, Y., & Zhang, F. (2021). User-Generated Content: A Promising Data Source for Urban Informatics. In Urban Informatics (pp. 503-522).
    Gao, X., Yu, W., Rong, Y., & Zhang, S. (2017). Ontology-based social media analysis for urban planning. Paper presented at the 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC).
    George, D., & Mallery, P. (2019). IBM SPSS statistics 26 step by step: A simple guide and reference. Routledge.
    Glass, J. J. (1979). Citizen participation in planning: the relationship between objectives and techniques. Journal of the American Planning Association, 45(2), 180-189.
    Griffiths, T. L., & Steyvers, M. (2004). Finding scientific topics. Proceedings of the National Academy of Sciences, 101(suppl 1), 5228-5235.
    Gupta, V., & Lehal, G. S. (2009). A survey of text mining techniques and applications. Journal of emerging technologies in web intelligence, 1(1), 60-76.
    Healey, P. (2020). Collaborative planning: Shaping places in fragmented societies. Bloomsbury Publishing.
    Iaconesi, S., & Persico, O. (2014). Visualising emotional landmarks in cities. Paper presented at the 2014 18th International Conference on Information Visualisation.
    Innes, J. E., & Booher, D. E. (2004). Reframing public participation: strategies for the 21st century. Planning theory & practice, 5(4), 419-436.
    Jang, K. M., & Kim, Y. (2019). Crowd-sourced cognitive mapping: A new way of displaying people’s cognitive perception of urban space. Plos One, 14(6), e0218590.
    Jung, H., & Lee, B. G. (2020). Research trends in text mining: Semantic network and main path analysis of selected journals. Expert Systems with Applications, 162. doi:10.1016/j.eswa.2020.113851
    Kaur, A., & Chopra, D. (2016). Comparison of text mining tools. Paper presented at the 2016 5th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions)(ICRITO).
    Kitchin, R. (2016). The ethics of smart cities and urban science. Philos Trans A Math Phys Eng Sci, 374(2083). doi:10.1098/rsta.2016.0115
    Klandermans, B., & van Stekelenburg, J. (2013). Social movements and the dynamics of collective action. In L. Huddy, D. O. Sears, & J. S. Levy (Eds.), The Oxford handbook of political psychology (pp. 774–811). Oxford University Press.
    Klein, C., & Kaefer, G. (2008). From smart homes to smart cities: Opportunities and challenges from an industrial perspective. Paper presented at the International Conference on Next Generation Wired/Wireless Networking.
    Likert, R. (1932). A technique for the measurement of attitudes. Archives of psychology.
    Lin, Y., & Geertman, S. (2019). Can social media play a role in urban planning? A literature review. Paper presented at the International Conference on Computers in Urban Planning and Urban Management.
    Mandarano, L., Meenar, M., & Steins, C. (2010). Building social capital in the digital age of civic engagement. Journal of planning literature, 25(2), 123-135.
    Martí, P., Serrano-Estrada, L., & Nolasco-Cirugeda, A. (2019). Social media data: Challenges, opportunities and limitations in urban studies. Computers, Environment and Urban Systems, 74, 161-174.
    Massa, P. (2016). Social Media Geographic Information (SMGI): opportunities for spatial planning and governance.
    Nam, T., & Pardo, T. A. (2011). Conceptualizing smart city with dimensions of technology, people, and institutions. Paper presented at the Proceedings of the 12th annual international digital government research conference: digital government innovation in challenging times.
    Olson, M. (1965) The Logic of Collective Action: Public Goods and the Theory of Groups (Cambridge, MA, Cambridge University Press).
    Resch, B., Summa, A., Zeile, P., & Strube, M. (2016). Citizen-centric urban planning through extracting emotion information from twitter in an interdisciplinary space-time-linguistics algorithm. Urban Planning, 1(2), 114-127.
    Salloum, S. A., Al-Emran, M., Monem, A. A., & Shaalan, K. (2018). Using text mining techniques for extracting information from research articles. In Intelligent natural language processing: Trends and Applications (pp. 373-397): Springer.
    Senaratne, H., Mobasheri, A., Ali, A. L., Capineri, C., & Haklay, M. (2017). A review of volunteered geographic information quality assessment methods. International Journal of Geographical Information Science, 31(1), 139-167.
    Sieber, R. (2004). Rewiring for a GIS/2. Cartographica: The international journal for geographic information and geovisualization, 39(1), 25-39.
    Sievert, C., & Shirley, K. (2014). LDAvis: A method for visualizing and interpreting topics. Paper presented at the Proceedings of the workshop on interactive language learning, visualization, and interfaces.
    Stern, E., Gudes, O., & Svoray, T. (2009). Web-based and traditional public participation in comprehensive planning: a comparative study. Environment and Planning B: Planning and Design, 36(6), 1067-1085.
    Sukanya, M., & Biruntha, S. (2012). Techniques on text mining. Paper presented at the 2012 IEEE International Conference on Advanced Communication Control and Computing Technologies (ICACCCT).
    Tavakol, M., & Dennick, R. (2011). Making sense of Cronbach's alpha. International journal of medical education, 2, 53.
    Thakuriah, P., Tilahun, N. Y., & Zellner, M. (2017). Big Data and Urban Informatics: Innovations and Challenges to Urban Planning and Knowledge Discovery. In Seeing Cities Through Big Data (pp. 11-45).
    Tu, W., Li, Q., Zhang, Y., & Yue, Y. (2021). User-Generated Content and Its Applications in Urban Studies. In Urban Informatics (pp. 523-539).
    Vargas-Calderón, V., & Camargo, J. E. (2019). Characterization of citizens using word2vec and latent topic analysis in a large set of tweets. Cities, 92, 187-196.
    Wang, D., Amin, M. T., Li, S., Abdelzaher, T., Kaplan, L., Gu, S., . . . Ganti, R. (2014). Using humans as sensors: an estimation-theoretic perspective. Paper presented at the IPSN-14 proceedings of the 13th international symposium on information processing in sensor networks.
    Wang, X., Chen, Y., Han, Z., Yao, X., Gu, P., & Jiang, Y. (2021). Evaluation of mobile-based public participation in China's urban planning: Case study of the PinStreet platform. Cities, 109, 102993.
    Wang, Y., Li, H., & Wu, Z. (2019). Attitude of the Chinese public toward off-site construction: A text mining study. Journal of Cleaner Production, 238, 117926.
    Washburn, D., Sindhu, U., Balaouras, S., Dines, R. A., Hayes, N., & Nelson, L. E. (2009). Helping CIOs understand “smart city” initiatives. Growth, 17(2), 1-17.
    Wei-Fan, C., & Ku, L.-W. (2018). Introduction to CSentiPackage: Tools for Chinese Sentiment Analysis. Journal of Library & Information Science, 44(1), 24.
    Xu, Y., Yeung, J. F., Chan, A. P., Chan, D. W., Wang, S. Q., & Ke, Y. (2010). Developing a risk assessment model for PPP projects in China—A fuzzy synthetic evaluation approach. Automation in Construction, 19(7), 929-943.
    Yap, L. F., Bessho, M., Koshizuka, N., & Sakamura, K. (2012). User-Generated Content for Location-Based Services: A Review. In Virtual Communities, Social Networks and Collaboration (pp. 163-179).
    Younis, E. M. (2015). Sentiment analysis and text mining for social media microblogs using open source tools: an empirical study. International Journal of Computer Applications, 112(5).
    Yu, C. H., Jannasch-Pennell, A., & DiGangi, S. (2011). Compatibility between text mining and qualitative research in the perspectives of grounded theory, content analysis, and reliability. Qualitative Report, 16(3), 730-744.
    Zhao, M., Lin, Y., & Derudder, B. (2018). Demonstration of public participation and communication through social media in the network society within Shanghai. Environment and Planning B: Urban Analytics and City Science, 45(3), 529-547.
    Zhou, Y., De, S., & Moessner, K. (2016). Real world city event extraction from Twitter data streams. Procedia computer science, 98, 443-448.
    台南市政府(2016)。變更臺南市主要計畫(配合臺南市區鐡路地下化計畫)(第一階段)。台南:台南市政府。
    田光均(2017)。以文字探勘分析大眾論壇內容探討兩岸工作議題的差異與關聯。國立中山大學資訊管理研究所學位論文,高雄市。 
    岳文澤、裘雙雙、張群、楊華珂(2019)。新媒體時代城市規劃的公眾參與:話題演進與情感判別。浙江大學學報(人文社會科學版),5(4),105。
    林峰田(2007)。空間規劃理論的演進。待查。
    金家禾(2019)。臺灣都市計畫人民陳情與計畫審議之探討-以新北市升格為直轄市後進行之都市計畫通盤檢討為例。都市與計劃,46(2),101-117。
    財團法人台灣網路資訊中心(2020)。服務應用概況。取自:https://report.twnic.tw/2020/TrendAnalysis_globalCompetitiveness.html
    陶治中、陳亭愷(2016)。社群運算應用於網路輿情情感傾向分析之研究-以實施國道計程電子收費政策為例。運輸學刊,28(3),295-334。
    楊福銘(2003)。從公共利益觀點探討都市計劃之民眾參與。國立成功大學都市計劃學系學位論文,台南市。
    鄒克萬、張學聖(2000)。網際網路規劃支援系統在民眾參與應用之回顧。建築學報,(32),111-128。
    羅唯瑄(2020)。透過社群媒體數據探討歷史街區景觀偏好之研究—以府城歷史街道為例。國立成功大學都市計劃學系學位論文,台南市。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE