簡易檢索 / 詳目顯示

研究生: 黃耀弘
Huang, Yao-Hong
論文名稱: 應用第一原理探討硒化錫摻雜對熱電優值之影響
Investigation of the Effect of Doping on Thermoelectric Performance of SnSe by First Principle
指導教授: 陳朝光
Chen, Chao-Kuang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 93
中文關鍵詞: 第一原理熱電材料功率因子
外文關鍵詞: First Principle, thermoelectric materials, power factor
相關次數: 點閱:96下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來石化燃料的消耗面臨枯竭以及氣候變遷,且人類對於能源的需求不斷增加,環保、低成本且高效率的新型能源成為重要的課題。本文研究熱電材料其中之一的硒化錫,探討藉由摻雜其他元素以達到提升熱電性質的潛力。
    本文應用第一原理探討硒化錫摻雜鉛及碲元素,在不同濃度下之摻雜對於硒化錫摻雜成N型或是P型半導體之趨勢是否有影響。利用軟體Quantum Espresso及BoltzTraP進行電子結構及性質的計算,獲得電子傳導率及席貝克係數等數據,以計算本文著重的功率因子(Power factor)的探討上。
    本文研究結果顯示,若從各個方向來討論,在N型半導體方面,摻雜鉛濃度1.56%的功率因子在300K、500K及700K溫度條件下,其a方向與未摻雜之硒化錫相比分別提升8.514、5.65及2.41 。而摻雜碲元素在各種摻雜濃度及溫度條件下,對硒化錫的熱電性質沒有顯著的提升。

     Because of the lack of fossil fuels, climate change, and the demand of energy is increasing in recent years, how to find the kind of energy has character of eco-friendly、low cost and high efficiency is important. In this study, we investigate one of thermoelectric materials, SnSe, to research the potential of properties of thermoelectrics by doping other elements.
      In this study, we investigate SnSe doping with Pb and Te elements by First Principle, respectively. With different doping percentage and elements, we study how the doping influence the trend of SnSe to become N-type or P-type semiconductor. We use Quantum Espresso and BoltzTraP to do the calculation of electric structure and properties, to get the electric conductivity and Seebeck coefficients, and we focus on the investigation of power factor, square of Seebeck coefficients times electric conductivity.
      Our results show that SnSe doped with Pb of 1.56%, the power factor in N-tpye semiconductor and temperature at 300K, 500K, 700K, can increase 8.514, 5.65, 2.41 compare with undoped SnSe in a-axis, respectively. In our result, doped with Te elements don’t show obvious improvement on the properties of thermoelectrics in every doping percentage and temperature condition.

    中文摘要 I Extend Abstract II 致謝 V 目錄 VI 表目錄 IX 圖目錄 XI 符號說明 XIX 第一章 緒論 1 1-1 前言 1 1-2 熱電效應 1 1-2-1 Seebeck效應 1 1-2-2 Peltier效應 2 1-2-3 Thomson效應 2 1-3 熱電優值 3 1-4 文獻回顧 4 1-5 章節概要 5 第二章 量子力學及固態物理理論 8 2-1 薛丁格方程式 8 2-2 密度泛函理論 10 2-2-1 Hohenberg-Kohn理論 11 2-2-2 Kohn-Sham方法 13 2-2-3 局域密度近似法 15 2-2-4 廣義梯度近似法 16 2-2-5 贋勢 16 2-2-6 自洽場方法 17 2-3 波茲曼理論 17 第三章 計算參數設定與模型建立 20 3-1 參數設定及計算流程 20 3-2 硒化錫及其摻雜模型建立 21 第四章 結果與討論 26 4-1 未摻雜之硒化錫相關性質 26 4-2 硒化錫摻雜鉛之相關性質 31 4-3 硒化錫摻雜碲之相關性質 34 第五章 結論及未來工作建議 89 5-1 結論 89 5-2 未來工作建議 89 參考文獻 91

    [1] S. Chen, K. Cai, and W. Zhao, “The effect of Te doping on the electronic structure and thermoelectric properties of SnSe,” Phys. B Condens. Matter, vol. 407, no. 21, pp. 4154–4159, 2012.
    [2] L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis, “Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals.,” Nature, vol. 508, no. 7496, pp. 373–7, 2014.
    [3] C.-L. Chen, H. Wang, Y.-Y. Chen, T. Day, and G. J. Snyder, “Thermoelectric properties of p-type polycrystalline SnSe doped with Ag.”
    [4] F. Q. Wang, S. Zhang, J. Yu, and Q. Wang, “Thermoelectric properties of single-layered SnSe sheet,” Nanoscale, vol. 7, 2015.
    [5] J. Yang, G. Zhang, G. Yang, C. Wang, and Y. Xu Wang, “Outstanding thermoelectric performances for both p- and n-type SnSe from first-principles study,” J. Alloys Compd., vol. 644, pp. 615–620, 2015.
    [6] Y. Zhang, X. Jia, H. Sun, B. Sun, B. Liu, H. Liu, L. Kong, and H. Ma, “Effect of high pressure on thermoelectric performance and electronic structure of SnSe via HPHT,” J. Alloys Compd., vol. 667, pp. 123–129, 2016.
    [7] N. K. Singh, S. Bathula, B. Gahtori, K. Tyagi, D. Haranath, and A. Dhar, “The effect of doping on thermoelectric performance of p-type SnSe: Promising thermoelectric material,” J. Alloys Compd., vol. 668, pp. 152–158, 2016.
    [8] G. Ding, G. Gao, and K. Yao, “High-efficient thermoelectric materials: The case of orthorhombic IV-VI compounds.,” Sci. Rep., vol. 5, p. 9567, 2015.
    [9] Y. Suzuki and H. Nakamura, “A supercell approach to the doping effect on the thermoelectric properties of SnSe.,” Phys. Chem. Chem. Phys., vol. 17, no. 44, pp. 29647–54, 2015.
    [10] “Pseudopotentials.” [Online]. Available: http://cmt.dur.ac.uk/sjc/thesis_dlg/node21.html.
    [11] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys. Condens. Matter, vol. 21, no. 39, p. 395502, Sep. 2009.
    [12] G. K. H. Madsen and D. J. Singh, “BoltzTraP. A code for calculating band-structure dependent quantities,” Comput. Phys. Commun., vol. 175, no. 1, pp. 67–71, 2006.
    [13] “Crystallography Open Database.” [Online]. Available: http://www.crystallography.net/cod/.
    [14] S. Stackhouse and L. Stixrude, “Theoretical Methods for Calculating the Lattice Thermal Conductivity of Minerals,” Rev. Mineral. Geochemistry, vol. 71, pp. 253–269, 2010.
    [15] A. C. Sparavigna and A. Carolina, “The Boltzmann Equation Of Phonon Thermal Transport Solved In the Relaxation Time Approximation – I – Theory,” Mech. Mater. Sci. Engi-neering J., 2016.
    [16] E. Barrios-Salgado, M. T. S. Nair, and P. K. Nair, “Thin films of n-type SnSe2 produced from chemically deposited p-type SnSe,” Thin Solid Films, vol. 598, pp. 149–155, 2015.
    [17] T. M. Tritt, Thermal Conductivity: Theory, Properties, and Applications. .
    [18] X. L. Wang, W. Li, T. X. Wang, and X. Q. Dai, “Modulation of magnetic properties of bilayer SnSe with transition-metals doping in the interlayer,” Phys. E Low-Dimensional Syst. Nanostructures, vol. 75, pp. 106–111, 2016.
    [19] X. He, H. Shen, W. Wang, Z. Wang, B. Zhang, and X. Li, “The mechanical and thermo-physical properties and electronic structures of SnS and SnSe in orthorhombic structure,” J. Alloys Compd., vol. 556, pp. 86–93, 2013.
    [20] H. Ju and J. Kim, “Effect of SiC ceramics on thermoelectric properties of SiC/SnSe composites for solid-state thermoelectric applications,” Ceram. Int., vol. 42, no. 8, pp. 9550–9556, 2016.
    [21] J. J. Quinn and K.-S. Yi, Solid State Physics. 2009.
    [22] L. L. Ma, Z. D. Cui, Z. Y. Li, S. L. Zhu, Y. Q. Liang, Q. W. Yin, and X. J. Yang, “The fabrication of SnSe/Ag nanoparticles on TiO2 nanotubes,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 178, no. 1, pp. 77–82, 2013.
    [23] Y. Li, B. He, J. P. Heremans, and J.-C. Zhao, “High-temperature oxidation behavior of thermoelectric SnSe,” J. Alloys Compd., vol. 669, pp. 224–231, 2016.
    [24] H. J. G. G. S. Nolas, J. Sharp, Thermoelectrics Basic Principles and New Materials Developments. 2001.
    [25] Z. H. Ge, K. Wei, H. Lewis, J. Martin, and G. S. Nolas, “Bottom-up processing and low temperature transport properties of polycrystalline SnSe,” J. Solid State Chem., vol. 225, pp. 354–358, 2015.
    [26] Z. Zhang, X. Zhao, and J. Li, “SnSe/carbon nanocomposite synthesized by high energy ball milling as an anode material for sodium-ion and lithium-ion batteries,” Electrochim. Acta, vol. 176, pp. 1296–1301, 2015.
    [27] T. J. Scheidemantel, C. Ambrosch-Draxl, T. Thonhauser, J. V. Badding, and J. O. Sofo, “Transport coefficients from first-principles calculations,” Phys. Rev. B, vol. 68, no. 12, p. 125210, 2003.
    [28] Z. Wang, K. Reinhardt, M. Dutta, and M. a Stroscio, Length-Scale Dependent Phonon Interactions, vol. 128. 2014.
    [29] T. Takabatake, K. Suekuni, T. Nakayama, and E. Kaneshita, “Phonon-glass electron-crystal thermoelectric clathrates: Experiments and theory,” Rev. Mod. Phys., vol. 86, no. 2, pp. 669–716, 2014.
    [30] S. Sassi, C. Candolfi, J.-B. Vaney, V. Ohorodniichuk, P. Masschelein, A. Dauscher, and B. Lenoir, “Transport Properties of Polycrystalline p-type SnSe,” Mater. Today Proc., vol. 2, no. 2, pp. 690–698, 2015.
    [31] X. Guan, P. Lu, L. Wu, L. Han, G. Liu, Y. Song, and S. Wang, “Thermoelectric properties of SnSe compound,” J. Alloys Compd., vol. 643, pp. 116–120, 2015.
    [32] L. Zhao, G. Tan, S. Hao, J. He, Y. Pei, H. Chi, S. Gong, H. Xu, V. P. Dravid, C. Uher, G. J. Snyder, C. Wolverton, and M. G. Kanatzidis, “Ultrahigh power factor and thermoelectric performance in hole-doped Supplementary Materials outline,” Science (80-. )., vol. 141, p. 6269, 2016.

    下載圖示 校內:立即公開
    校外:2017-07-01公開
    QR CODE