| 研究生: |
張君旭 Chang, Chun-Hsu |
|---|---|
| 論文名稱: |
利用逆算法配合實驗數據預測連續移動熱平板之熱傳係數 Application of the Inverse Method to Estimate the Heat Transfer Coefficient of the Moving Heated Plate with Experimental Data |
| 指導教授: |
陳寒濤
Chen, Han-Taw |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 熱傳係數 、移動平板 |
| 外文關鍵詞: | heat transfer coefficient, moving plate |
| 相關次數: | 點閱:111 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要是以熱傳導觀點來分析移動熱平板進入低溫環境時之溫度分佈,並估算出整體之熱傳分佈以及熱傳係數。期能提供一分析熱傳問題之方法,並藉由熱傳的觀點來探討材料擠壓成型、輥軋、金屬線的抽製、連續之鑄造、纖維的抽製和晶圓的長成等之製程,以期使材料之溫度分佈能趨於均勻。
本文提出一種混和拉式轉換法(Laplace transform method)與及有限差分法(Finite difference method)的數值方法,並配合最小平方法(Least-squares scheme)來對熱傳係數之測定。拉式轉換法的優點是可以求得在某一特定時間的溫度值,而不需要由初始時間慢慢的求解。最小平方法的應用在於使數值結果能較快的收斂。本文將探討溫度量測誤差、熱電偶(Thermocouple)的安裝位置及其數量對預測結果的影響。預測結果顯示本文之數值方法能夠有效的預測出較精確的估算值。預測結果也顯示量測誤差對估算值的影響並不是很敏感。因此本文之數值逆算法可成功的被應用來解析移動邊界之逆向熱傳問題。
The present study is analyzing the temperate distribution of the heated plate moving to lower temperate environment and estimating the heat flux and heat transfer coefficient distribution. And hopping offer a method to analyze the heat transfer problems and to discuss the processes such as hot rolling ,extrusion ,wire drawing ,continuous casting ,fiber drawing and crystal growing ,hopping the material temperate distribution can be uniform.
The present study introduces a hybrid numerical method to analyze the inverse heat conduction problem concerning the prediction of the surface behavior. This algorithm combines the Laplace transform technique and the finite-difference method in conjunction with the least-squares scheme and sequential-in-time concept. Time-dependent terms in the governing equation are removed by using the Laplace transform technique, and then the resulting differential equation is solved by using the finite-difference method. Due to the application of the Laplace transform technique, the temperature can be calculated at a specific time without step-by-step computation in the time domain. By the least-squares scheme, the convergence of iteration can become fast and stable. In this thesis, various examples are illustrated to show the applicability and efficiency of the present numerical method. The effect of time-step, numerical error and thermocouple location is investigated. It can be seem from various illustrated examples that the present numerical method can accurately and efficiently estimate the estimates, even though the thermocouple is located far from the estimated surface. Results also show that the estimations are not very sensitive to the measurement error. Thus, it can be concluded that the present numerical method can successfully be applied to analyze the moving boundary heat conduction problems.
1. Shumakoy, N. V., “A method for the experimental study of the process of heating a solid body,” Soviet Physics-Technical Physics (Translated by Institute of Physics), Vol. 2, pp. 771, 1957.
2. Stolz, G. Tr., “Numerical solution to an inverse problem of heat condition for simple shapes,” ASME J. Heat Transfer, Vol. 82, pp. 20-26, Feb. 1960.
3. Beck, J. V., “Calculation of surface heat flux from an integral temperature history,” ASME J. Heat Transfer, 62-HT-46, 1962.
4. Sparrow, E. M. , Haji-Sheikh A. and Lundgern, T. S. “The inverse problem in transient heat conduction, “ J. Appl. Mech., Vol. 86e, pp. 369-375, 1964.
5. Beck, J. V., “Surface heat flux determination using an integral method,” Nucl. Eng. Des., Vol. 7, pp. 170-178, 1968.
6. Beck, J. V., “Nonlinear estimation applied to the nonlinear inverse heat. conduction problem,” Int. J. Heat Mass Transfer, Vol. 13, pp. 713-71, 1970.
7. Alifanov, O. M., “Solution of an inverse problem of heat conduction by iteration method,” J. of Eng. Phys., Vol. 26, No. 4, pp. 471-476, 1974.
8. Beck, J. V., Litkouhi B., and St. Clair C. R., “Efficient sequential solution of nonlinear inverse heat conduction problem,” Numer. Heat Transfer, Vol. 5, pp. 275-286, 1982.
9. Alnajem, N. M., and Özisik, M. N., “A direct analytical approach for solving linear inverse heat conduction problems,” ASME J. Heat Transfer, Vol. 107, pp. 700-703, 1985.
10. Scott, E. P., and Beck, J. V., “Analysis of order of the sequential regulation solutions of heat conduction problem,” ASME J. Heat Transfer, Vol. 111, pp.218-224, 1989.
11. Beck, J. V., and Murio, D. A., “Combined function specification regularization procedure for solution of inverse heat conduction problem,” AIAA J., Vol. 24, No. 180-185, January, 1986.
12. Huang, C. H., Özisik, M. N., “Inverse problem of determining the unknown wall heat flux in laminar flow through a parallel plate duct,” Numer. Heat Transfer, Part A, Vol. 21, pp. 55-70, 1992.
13. Huang, C. H., Özisik, M. N., “Inverse problem of determining the unknown strength of an internal plate heat source,” J. Franklin Institute, Vol. 329, No. 4, pp. 751-764, 1992.
14. Arledge, R. G., and Haji-Sheikh, A., “A iterative approach to the solution of inverse heat conduction problem,” Numer. Heat Transfer, Vol. 1, pp. 365-376, 1978.
15. Woo, K. W., and Chow, L. C., “Inverse heat conduction by direct inverse laplace transform,” Numer. Heat Transfer, Vol. 4, pp. 499-504, 1981.
16. Raynaud, M., and Beck, J. V., “Methodology for comparison of inverse heat conduction methods,” ASME J. Heat Transfer, Vol. 110, pp. 30-37, 1988.
17. Chen, H. T., and Lin, J. Y., “Hybrid Laplace transform technique for non-linear transient thermal problems,” Int. J. Heat Mass Transfer, Vol. 34, pp. 1301-1308, 1991.
18. Chen, H. T., and Lin, J. Y., “ Numerical analysis for hyperbolic heat conduction,” Int. J. Mass Transfer, Vol. 36, pp. 2891-2898, 1993.
19. Chen, H. T., and Lin, J. Y., “Analysis of two-dimensional hyperbolic heat conduction problems,” Int. J. Heat Mass Transfer, Vol. 37, pp. 153-164, 1994.
20. Beck, J. V., Blackwell, B., and Chair, C. R. St., Jr, Inverse Heat Conduction:Ill-posed problem, Wiley, New York, 1985.
21. 吳朝煌, ”逆向熱傳導問題之研究 - 熱傳導係數及未知邊界溫度之預測,” 國立成功大學機械工程研究所, 碩士論文, 1994.
22. Honig, G., and Hirdes, U., “A method for the numerical inversion of Laplace transforms,” J. Comp. Appl. Math., Vol. 9, pp. 113-132, 1984.
23. Hills, R. G., Mulholland G. P., and Matthews L. K., “The application of the Backus-Gilbert method to the inverse heat conduction problem in composite meadia,” ASME Paper No. 82-HT-26, 1982.
24. Frank, I., “An application of least-squares method to the solution of the inverse problem of heat conduction,” J. Heat Transfer, 85C, pp. 378-379, 1963.
25. Mulholland, G. P., Gupta B. P., and San Martin R. L., “Inverse problem of heat conduction in composite meadia,” ASME Paper No. 75-WA/HT-83, 1975.
26. Deverall, L. I., And Channapragada R. S., “ An new integral equation for heat flux in inverse heat conduction,” J. Heat Transfer, 88C, pp. 327-328, 1966.
27. Burggraf, O. R., “An exact solution of the inverse problem in heat conduction theory and applications,” ASME J. Heat Transfer, Vol. 84, pp. 373-382, 1964.
28. Yeung, W. K. and Lam, T. T., “ Second-order finite difference approximation for inverse determination of thermal conductivity,” Int. J. Heat Mass Transfer, Vol. 39, No. 17, pp. 3685-3693, 1996.
29. Bass, B. R. and Ott L. J., “ A finite elment formulation of the two-dimensional inverse heat conduction problem,” Adv. Comput. Technol., Vol. 2, pp. 238-248, 1980.
30. Chen, H. T. and Lin, S. Y., “Estimation of surface temperature in two-dimensional inverse heat conduction problems,” Int. J. Heat Mass Transfer, Vol. 44, pp. 1455-1463, 2001.
31. Karwe, M. V. and Jaluria, Y., “Experimental investigation of thermal transport from a heated moving plate” Int. J. Heat Mass Transfer, Vol. 35, pp. 493-511, 1992.
32. Karwe, M.V. and Jaluria, Y., “Fluid Flow and Mixed Convection Transport From a Moving Plate in Rolling and Extrusion Processes” Trans. ASME J. Heat Transfer 110(3), pp. 655-661, 1988.
33. Kang, B. H., Yoo, J. and Janluria, Y., “Experimental Study of the Convective Cooling of a Heated Continuously Moving Material” Int. J. Heat Mass Transfer, Vol. 116, pp. 199-208, 1994.
34. Roy Choudhury, S., and Jauluria, Y., “Forced Convective Heat Transfer Form a Continuously Moving Heated Cylindrical Rod in Materials Processing” Transactions of the ASME,Vol. 116, pp. 724-734, 1994.
35. Jauluria, Y., and Karwe, M. V., “Thermal Transport From Heated Moving Surface” Transactions of the ASME, Vol. 108, pp. 728-733, 1986.