簡易檢索 / 詳目顯示

研究生: 周建良
Chou, Chien-Liang
論文名稱: 醣脂類生物界面活性劑rhamnolipid醱酵基質最適化及生產策略之研究
Medium optimization and fermentation strategies for the production of a Glycolipid-type biosurfactant rhamnolipid
指導教授: 張嘉修
Chang, Jo-Shu
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 173
中文關鍵詞: 臨界乳化指數柱狀活性碳臨界微胞濃度鼠李醣生物界面活性劑綠膿桿菌發泡煉石反應曲面法
外文關鍵詞: rhamnolipid, RSM, Pseudomonas aeruginosa, critical micelle concentration, expanded clay, cylindrical activated carbon, biosurfactant, critical emulsification index
相關次數: 點閱:97下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •  本研究以高雄石化廢水樣本篩出Pseudomonas aeruginosa J4來生產醣脂類(glycolipids)生物界面活性劑-鼠李醣酯(rhamnolipid),其能降低水的表面張力至29 dyne/cm,臨界微胞濃度(CMC)為40 mg/L,煤、柴油臨界乳化指數(CEI)分別為250 mg/L與300 mg/L,乳化指數(E24)為80%,而且熱穩定性高,不易受高溫影響而失活。本研究主要是探討以不同培養基、溫度、培養轉速、碳源對於P. aeruginosa J4生產rhamnolipid之影響,並以反應曲面實驗設計法(RSM)找出最適化培養基中微量金屬組成。結果顯示,最適生產rhamnolipid之培養基組成如下:8% olive oil,50 mM NH4NO3,4.28 mM Na2HPO4,30 mM KH2PO4,257.53 M MgSO4˙7H2O,7 M CaCl2,4M Sodium EDTA,1.14 M FeSO4˙7H2O。最適生產條件為:培養溫度37℃,攪拌速率200 rpm,pH 7.0。可以得到rhamnolipid最大產量為8.6 g/L。

      另外,本研究亦探討添加柱狀活性碳與發泡煉石等固體載體及細胞固定化技術來提升rhamnolipid產量。結果發現,添加固體載體能使得菌體形成生物膜(biofilm)而促進生長。發泡煉石最適添加量為93.3 g/L,可提升rhamnolipid產量至16.3 g/L;柱狀活性碳最適添加量為27.7 g/L,可提升rhamnolipid產量至15.3 g/L。證實了以添加固體載體來量產rhamnolipid策略之可行性。

     Rhamnolipid is a glycolipid-type biosurfactant primarily produced by Pseudomonas aeruginosa strains. Pseudomonas aeruginosa J4 was isolated from the wastewater of Kaohsiung petrochemical plant. Rhamnolipid can reduce surface tension of water from 72 to 29 dyne/cm. The critical micelle concentration of rhamnolipid is 40 mg/L and the critical emulsion index of kerosene and diesel are 55 mg/L and 100 mg/L, respectively. The emulsification index against kerosene or diesel is 80%. Also, rhamnolipid has good thermal stability and is resistant to elevated temperatures.

     We investigated the effects on medium compositions, temperature, agitation and carbon sources. Response surface methodology was used to identify optimal mineral salt composition for rhamnolipid production. The optimal medium compositions of maximum rhamnolipid production were 8% olive oil, 50 mM NH4NO3, 4.28 mM Na2HPO4, 30 mM KH2PO4, 257.53 M MgSO4˙7H2O, 7M CaCl2, 4M sodium EDTA, 1.14M FeSO4˙7H2O. The optimal cultural conditions were temperature 37 oC, agitation rate 200 rpm and pH 7.0. Under these optimal conditions, the maximum rhamnolipid production was 8.6 g/L. In addition, the yield of rhamnolipid was improved by adding solid carriers (such as cylindrical activated carbon and expanded clay) and by using immobilized cells. The results show that addition of solid carriers could stimulate cell growth. The optimal additions of expanded clay and cylindrical activated carbon were 93.3 g/L and 26.7 g/L. Those condition would obtain rhamnolipid production were 16.3 g/L and 15.3 g/L, respectively.

    目 錄 中文摘要-----------------------------------------------------------------I 英文摘要----------------------------------------------------------------II 誌謝-------------------------------------------------------------------III 目錄---------------------------------------------------------------------V 表目錄-------------------------------------------------------------------X 圖目錄-----------------------------------------------------------------XII 第一章 前言--------------------------------------------------------------1 1-1 前言-----------------------------------------------------------------1 1-2 研究動機與目的-------------------------------------------------------2 第二章 文獻回顧與原理----------------------------------------------------4 2-1 石化工業發展對人類的助益與衝擊---------------------------------------4 2-2 界面活性劑之作用機制-------------------------------------------------6 2-3 生物界面活性劑簡介--------------------------------------------------11 2-4 生物界面活性劑之鑑定------------------------------------------------12 2-4-1 具生產生物界面活性劑潛力之菌種篩選--------------------------------12 2-4-2 生物界面活性劑之活性評估------------------------------------------14 2-5 生物界面活性劑之種類------------------------------------------------16 2-5-1 各種生物界面活性劑之相關研究--------------------------------------20 2-6 生物界面活性劑之合成機制--------------------------------------------24 2-7 生物界面活性劑之應用與發展------------------------------------------28 2-7-1 漏油之污染處理----------------------------------------------------28 2-7-2 土壤污染整治------------------------------------------------------31 2-8 固定化技術----------------------------------------------------------33 2-8-1 固定化技術之歷史--------------------------------------------------33 2-8-2 固定化方法--------------------------------------------------------33 2-8-3 固定化細胞擔體比較------------------------------------------------38 2-9 實驗設計法----------------------------------------------------------41 2-9-1 反應曲面法--------------------------------------------------------42 2-9-2 反應曲面法之最適化步驟--------------------------------------------43 2-9-3 二水準因子設計(Two-level factorial design)------------------------44 2-9-4 陡升路徑法(Method of path of steepest ascent)---------------------46 2-9-5 Box-Bohnken設計---------------------------------------------------46 第三章 實驗方法與材料---------------------------------------------------48 3-1 實驗藥品------------------------------------------------------------48 3-2 實驗儀器------------------------------------------------------------50 3-3 培養基組成----------------------------------------------------------52 3-3-1 LB培養基(LB medium)-----------------------------------------------52 3-3-2 Mineral salt培養基(MS medum)--------------------------------------52 3-3-3 Phosphate buffered saline (PBS buffer)----------------------------52 3-3-4 糖蜜醱酵液培養基(CMS medium)--------------------------------------53 3-4 菌種培養與細胞濃度的測定--------------------------------------------54 3-4-1 菌種培養----------------------------------------------------------54 3-4-2 細胞濃度測定------------------------------------------------------55 3-5 生物界面活性劑潛力菌株之分離及篩選----------------------------------56 3-5-1 Pseudomonas aeruginosa菌種介紹------------------------------------56 3-6 實驗步驟與分析方法--------------------------------------------------58 3-6-1 油品乳化能力之測定------------------------------------------------58 3-6-2 表面張力之測定----------------------------------------------------58 3-6-3 Rhamnolipid定量之比色法分析---------------------------------------59 3-6-4 Rhamnose檢量線之製備----------------------------------------------59 3-6-5 Rhamnolipid之純化-------------------------------------------------60 3-6-6 臨界微胞濃度(Critical micelle concentration, CMC)之測定-----------60 3-6-7 臨界乳化指數(Critical emulsification index, CEI)之測定------------60 3-6-8 Rhamnolipid熱穩定性(Thermal stability)之分析----------------------61 3-6-9 共聚合乳膠固定化顆粒之製備----------------------------------------61 3-6-10 固體載體之添加策略-----------------------------------------------63 第四章 結果與討論-------------------------------------------------------64 4-1 生產生物界面活性劑之菌種篩選與潛力評估------------------------------64 4-2 生物界面活性劑生產製程之基礎試驗------------------------------------74 4-2-1 Rhamnolipid之定量分析---------------------------------------------74 4-2-2 Rhamnolipid之純化與結構分析---------------------------------------76 4-2-3 培養基測試--------------------------------------------------------86 4-3 Rhamnolipid生產製程之最適化-----------------------------------------96 4-3-1 溫度條件之探討----------------------------------------------------96 4-3-2 培養轉速之探討---------------------------------------------------100 4-3-3 碳源種類之探討---------------------------------------------------104 4-3-4 Fe2+濃度之影響--------------------------------------------------114 4-3-5以實驗設計法進行培養基中微量金屬組成之最佳化----------------------116 4-3-5-1 二水準因子設計(Two-level factorial design)---------------------117 4-3-5-2 陡升路徑法(Method of path of steepest ascent)------------------125 4-3-5-3反應曲面法(Response surface methodology, RSM)-------------------128 4-4 Rhamnolipid生產製程之醱酵策略--------------------------------------134 4-4-1 固體載體---------------------------------------------------------134 4-4-2 共聚合乳膠細胞固定化---------------------------------------------135 4-5 Rhamnolipid之特性分析----------------------------------------------146 4-5-1 熱穩定性(Thermal stability) -------------------------------------146 4-5-2 微生物抑制測試---------------------------------------------------147 4-5-3 臨界微胞濃度(CMC)------------------------------------------------148 4-5-4 臨界乳化指數(CEI)------------------------------------------------150 4-5-5 鹽度及pH值-------------------------------------------------------152 第五章 結論------------------------------------------------------------155 參考文獻---------------------------------------------------------------162 附錄-------------------------------------------------------------------172 自述-------------------------------------------------------------------173 表 目 錄 表2.1 構成界面活性劑之主要原子團--------------------------------6 表2.2 各種生物界面活性劑之界面性質-----------------------------17 表2.3 常見的生產生物界面活性劑之微生物-------------------------21 表2.4 國外相關團隊以不同碳源生產生物界面活性劑rhamnolipid------23 表2.5 固定化細胞的特性和選擇規範-------------------------------39 表2.6 各種固定化方法之優缺點-----------------------------------40 表2-7 互補性之23因子設計表-------------------------------------45 表4.1 J4與J36菌株鑑定菌種之結果-------------------------------67 表4.2 P. aeruginosa J4與P. aeruginosa J22之表面活性比較-------69 表4.3 不同碳源對於P. kaohsiungensis之生長與表面活性總比較------73 表4.4 Rhamnolipid在1H NMR圖譜之化學位移-----------------------81 表4.5 Rhamnolipid在13C NMR圖譜之化學位移----------------------81 表4.6 各種培養基之成本比較-------------------------------------95 表4.7 各種培養基測試P. aeruginosa J4生產rhamnolipid結果總比較--95 表4.8 不同溫度測試P. aeruginosa J4生產rhamnolipid結果總比較---100 表4.9 Two-level實驗設計表------------------------------------120 表4.10 Two-level實驗設計以Plackeet-Burman folded method迴歸 之實驗結果---------------------------------------------121 表4.11 Two-level實驗設計之Plackeet-Burman folded method迴歸 分析表-------------------------------------------------118 表4.12 陡升路徑法之實驗設計表---------------------------------127 表4.13 RSM之實驗設計表---------------------------------------129 表4.14 RSM實驗設計以Box-Behnken method之實驗結果-------------129 表4.15 RSM實驗設計以Box-Behnken method之迴歸分析表-----------130 表4.16 Rhamnolipid之熱穩定性測試-----------------------------146 表4.17 Rhamnolipid對於微生物抑制之測試-----------------------147 表5.1 不同操作條件對於P. aeruginosa J4生產rhamnolipid 結果總比較----------------------------------------------157 表5.2 不同濃度的各種碳源對於P. aeruginosa J4生產rhamnolipid 結果總比較(1)-------------------------------------------158 表5.3 不同濃度的各種碳源對於P. aeruginosa J4生產rhamnolipid 結果總比較(2)-------------------------------------------159 表5.4 不同濃度的各種碳源對於P. aeruginosa J4生產rhamnolipid 結果總比較(3)-------------------------------------------160 表5.5 不同固體載體添加策略對於P. aeruginosa J4生產rhamnolipid 結果總比較----------------------------------------------161 圖 目 錄 圖2.1 界面活性劑的濃度與表面張力、界面張力及溶解度變化之情形----9 圖2.2 微胞結構--------------------------------------------------9 圖2.3 常見的glycolipid 生物界面活性劑--------------------------18 圖2.4 Lipopeptide生物界面活性劑-Surfactin之結構--------------18 圖2.5 Phosphatidylethanolamine之主要結構----------------------19 圖2.6 Emulsan之主要結構---------------------------------------19 圖2.7 Rhamnosyltransferase之基因調控機制----------------------23 圖2.8 P. aeruginosa生產rhamnolipid之生化合成途徑--------------26 圖2.9 Rhamnolipid之主要的六種結構-----------------------------27 圖2.10 典型土壤與地下水之油品洩漏污染以界面活性劑處理之圖示----29 圖2.11 生物界面活性劑去除重金屬之機制--------------------------32 圖2.12 生物觸媒吸附於擔體--------------------------------------38 圖2.13 生物觸媒與擔體離子結合----------------------------------38 圖3.1 P. aeruginosa J4之電子顯微鏡SEM圖-----------------------57 圖3.2 乳化指數計算之示意圖-------------------------------------58 圖3.3 固定化細胞製成圖-----------------------------------------62 圖3.4 共聚合乳膠固定化細胞實照---------------------------------62 圖3.5 固體載體實照-柱狀活性碳與發泡煉石-----------------------63 圖4.1 高雄石化廠廢水樣本篩選菌株J1~J36之表面張力下降量 與煤油乳化指數之相對比較---------------------------------66 圖4.2 利用LB medium培養P. aeruginosa J4的生長情形、pH變化 及油品乳化能力之初步測試---------------------------------68 圖4.3 Pseudoxanthomonas kaohsiungensis於不同pH值之生長情形----71 圖4.4 Pseudoxanthomonas kaohsiungensis於不同溫度之生長情形----72 圖4.5 P. aeruginosa J4生產rhamnolipid之血瓊脂溶血活性測試-----75 圖4.6 純化後之Rhamnolipid--------------------------------------78 圖4.7 純化Rhamnolipid之煤、柴油乳化能力------------------------78 圖4.8 Rhamnolipid之1H NMR圖譜---------------------------------79 圖4.9 Rhamnolipid之13C NMR圖譜--------------------------------80 圖4.10 Rhamnolipid之質譜圖------------------------------------82 圖4.11 Rhamnolipid之R1的質譜圖--------------------------------83 圖4.12 Rhamnolipid之R2的質譜圖--------------------------------84 圖4.13 P. aeruginosa J4生產Rhamnolipid之化學結構--------------85 圖4.14 LB medium培養P. aeruginosa J4--------------------------89 圖4.15 LB medium添加1% kerosene培養P. aeruginosa J4-----------90 圖4.16 MS medium培養P. aeruginosa J4--------------------------91 圖4.17 MS medium添加1% kerosene培養P. aeruginosa J4-----------92 圖4.18 CMS medium培養P. aeruginosa J4-------------------------93 圖4.19 CMS medium添加1% kerosene培養P. aeruginosa J4----------94 圖4.20 不同溫度對於P. aeruginosa J4生長之影響------------------98 圖4.21 不同溫度對於P. aeruginosa J4之比生長速率----------------98 圖4.22 不同溫度對於生產rhamnolipid之影響-----------------------99 圖4.23 不同溫度對於比rhamnolipid生產速率之影響-----------------99 圖4.24 不同培養轉速對於P. aeruginosa J4之比生長速率-----------102 圖4.25 不同培養轉速對於P. aeruginosa J4生產rhamnolipid之影響--102 圖4.26 不同培養轉速對於比rhamnolipid生產速率之影響------------103 圖4.27 不同濃度的各種碳源對於P. aeruginosa J4之rhamnolipid 總生產速率之比較---------------------------------------108 圖4.28 不同濃度的olive oil與soybean oil對於P. aeruginosa J4之 rhamnolipid總生產速率之比較----------------------------109 圖4.29 不同濃度之各種碳源對於P. aeruginosa J4生產rhamnolipid 產量之比較(1)------------------------------------------110 圖4.30 不同濃度之各種碳源對於P. aeruginosa J4生產rhamnolipid 產量之比較(2)------------------------------------------111 圖4.31 以不同濃度之各種碳源培養P. aeruginosa J4對於 表面張力降低之比較(1)----------------------------------112 圖4.32 以不同濃度之各種碳源培養Pseudomonas aeruginosa J4 對於表面張力降低之比較(2)------------------------------113 圖4.33 不同Fe2+濃度所得rhamnolipid產量之比較------------------115 圖4.34 以Gompertz equation來迴歸分析實驗結果------------------123 圖4.35 各微量金屬離子對rhamnolipid最大產量(Ymax)之主要效應----124 圖4.36 以Pareto chart分析微量金屬離子對rhamnolipid 最大產量(Ymax)之影響-----------------------------------124 圖4.37 陡升路徑法之實驗結果-----------------------------------127 圖4.38 Na2HPO4和MgSO4對rhamnolipid產量之反應曲面圖-----------131 圖4.39 Na2HPO4和MgSO4對rhamnolipid產量之等高線圖-------------131 圖4.40 Na2HPO4和FeSO4對rhamnolipid產量之反應曲面圖-----------132 圖4.41 Na2HPO4和FeSO4對rhamnolipid產量之等高線圖-------------132 圖4.42 FeSO4和MgSO4對rhamnolipid產量之反應曲面圖-------------133 圖4.43 FeSO4和MgSO4對rhamnolipid產量之等高線圖---------------133 圖4.44 不同固體載體的添加量對於rhamnolipid產量之比較----------136 圖4.45 添加固體載體對於P. aeruginosa J4菌體生長之情形---------137 圖4.46 固體載體與固定化顆粒對於rhamnolipid產量之比較----------138 圖4.47 柱狀活性碳表面之電子顯微鏡SEM圖(空白組)----------------139 圖4.48 柱狀活性碳表面之電子顯微鏡SEM圖(載體添加量13 g/L)------139 圖4.49 柱狀活性碳表面之電子顯微鏡SEM圖(載體添加量27 g/L)------140 圖4.50 柱狀活性碳表面之電子顯微鏡SEM圖(載體添加量40 g/L)------140 圖4.51 柱狀活性碳表面之電子顯微鏡SEM圖(載體添加量53 g/L)------141 圖4.52 柱狀活性碳表面之電子顯微鏡SEM圖(載體添加量80 g/L)------141 圖4.53 發泡煉石表面之電子顯微鏡SEM圖(空白組)------------------142 圖4.54 發泡煉石表面之電子顯微鏡SEM圖(載體添加量40 g/L)--------142 圖4.55 發泡煉石表面之電子顯微鏡SEM圖(載體添加量80 g/L)--------143 圖4.56 發泡煉石表面之電子顯微鏡SEM圖(載體添加量93 g/L)--------143 圖4.57 發泡煉石表面之電子顯微鏡SEM圖(載體添加量107 g/L)-------144 圖4.58 發泡煉石表面之電子顯微鏡SEM圖(載體添加量120 g/L)-------144 圖4.59 共聚合乳膠細胞固定化顆粒表面之電子顯微鏡SEM圖----------145 圖4.60 Rhamnolipid之CMC值------------------------------------149 圖4.61 Rhamnolipid對於煤、柴油之CEI值------------------------151 圖4.62 鹽度對於rhamnolipid油品乳化能力之影響------------------153 圖4.63 pH值對於rhamnolipid油品乳化能力之影響-----------------154

    Abalos A., Pinazo A., Infante M.R., Casals M., García F., Manresa A., “Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes” Langmuir, 17, 1367–1371 (2001)

    Box G.E., Hunter W., Hunter J.S., “Statistics for experimenters” John Wiley and Sons, New York. (1978)

    Banat I.M., “Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: A review” Fuel and Energy Abstracts, 36, 4, 290–298 (1995)

    Banat I.M., Makkar R.S., Cameotra S.S., “Potential commercial applications of microbial surfactants” Applied Microbiology and Biotechnology, 53, 495–508 (2000)

    Barathi S., Vasudevan N., “Utilization of petroleum hydrocarbons by Pseudomonas fluorescens isolated from a petroleum-contaminated soil” Environment International, 26, 5, 413–416 (2001)

    Brondz I., “Development of fatty acid analysis by high-performance liquid chromatography, gas chromato -graphy, and related techniques” Adapted Physical Activity Quarterly, 465, 1–37 (2002)

    Chandrasekaran E.V., Bemiller J.N., ”Constituent analyses of glycosamino-glycans” Method in Carbohydrate Chemistry, New York, 89–96 (1980)

    Cooper D.G., Goldenberg B.G., “Surface-active agents from two Bacillus species” Applied and Environmental Microbiology, 53, 224–229 (1987)

    Carmen C., Jose´ A.T., Francisco J.A., Antonio O., Daniel P., Hudak A.J., “Microorganism selection and biosurfactant production in a continuously and periodically operated bioslurry reactor” Journal of Hazardous Materials, 84, 2, 253–264 (2001)

    Cosson M., Querleu D., Donnez J., Madelenat P., “Dienogest is as effective as triptorelin in the treatment of endometriosis after laparoscopic surgery: results of a prospective, multicenter, randomized study” Fertility and Sterility, 77, 4, 684–692 (2002)

    Carmen C., Jose´ A.T., Francisco J.A., Antonio O., “Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin” Biochimica et Biophysica Acta, 1611, 91–97 (2003)

    Cohen R., Ozdemir G., Exerowa D., “Free thin liquid films (foam films) from rhamnolipids: type of the film and stability” Colloids and Surfaces B: Biointerfaces, 29, 197–204 (2003)

    Chang J.S., Chou C.L., Lin G.H., Sheu S.Y., Chen W.M., “Pseudoxanthomonas kaohsiungensis, sp. nov., a novel bacterium isolated from oil-polluted site produces extracellular surface activity” Systematic and Applied Microbiology, 28, 137–144 (2005)

    Desai J.D., Banat I.M., “Microbial production of surfactants and their commercial potential” Microbiology and Molecular Biology Reviews, 61, 47–64 (1997)

    Desai J.D., “Microbial production of surfactants and their commercial potential” Fuel and Energy Abstracts, 38, 4, 221–228 (1997)

    Deziel E., Lepine F., Dennie D., Boismenu D., Mamer V., “Liquid chromatography/mass spectrophotometry analysis of mixtures of rhamnolipids produced by Pseudomonas aeruginosa 57RP grown on mannitol or naphthalene” Biochimica et Biophysica Acta, 1440, 244–252 (1999)

    Frank S., “Wolfgang A lattice-gas model for specific ion adsorption at liquid/liquid interfaces” Journal of Electroanalytical Chemistry, 500, 1, 491–497 (2001)

    Guerra S.L., Kappeli O., Fiechter A., “Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source” Applied and Environmental Microbiology, 48, 301–305 (1984)

    Gunster D.G., Bonnevie N.L., Gillis C.A., Wenning R.J., “Assessment of Chemical Loadings to Newark Bay, New Jersey from Petroleum and Hazardous Chemical Accidents Occurring from 1986 to 1991” Ecotoxicology and Environmental Safety, 25, 2, 202–213 (1993)

    Gloria S.C., Wild M., Caro A.D., Hernandez A.L., Miller R.M., “Selection and partial characterization of a Pseudomonas aeruginosa mono-rhamnolipid deficient mutant” FEMS Microbiology Letters, 153, 279–285 (1997)

    Himmelblau D.M., “Process analysis by statistical methods” John Wiley and Sons, New York, 230–292 (1970)

    Harvey S., Elashi I., Valdes J.J., Kamely D., Chakrabarty A.M., “Enhanced removal of Exxon Valdez spilled oil from Alaskan gravel by a microbial surfactant” Bio/Technology, 8, 228–230 (1990)

    Herman D.C., Artiola J.F., Miller R.M., “Removal of cadmium, lead and zinc from soil by a rhamnolipid biosurfactant” Environmental Science and Technology, 29, 2280–2285 (1995)

    Harvey R.W., “Microorganisms as tracers in groundwater injection and recovery experiments: a review” FEMS Microbiology Reviews, 20, 3, 461–472 (1997)

    Haba E., Espuny M.J., Busquets M., Manresa A., “Screening and production of rhamnolipids by Pseudomonas aeruginosa 47T2 NCIB 40044 from waste frying oil” Journal of Applied Microbiology, 88, 379–387 (2000)

    Hori N., Tan Y., King M., Strominger N.L., Carpenter D.O., “Differential actions and excitotoxicity of glutamate agonists on motoneurons in adult mouse cervical spinal cord slices” Brain Research, 958, 2, 434–438 (2002)

    Itoh S., Suzuki T., “Effect of rhamnolipids on growth of Pseudomonas aeruginosa mutant deficient in n-paraffin-utilizing ability” Agricultural and Biological Chemistry, 36, 2233–2235 (1972)
    Ingmanson D.E., Wallace W.J., “Oceanography, An Introduction” 5th ed. (1995)

    Iqbal M.C.M., Röbbelen G., Möllers C., “Biosynthesis of glucosinolates by microspore derived embryoids and plantlets in vitro of Brassica napus L” Plant Science. 112, 1, 107–115 (1995)

    Inoh Y., Kitamoto D., Hirashima N., “Mamoru biosurfactants of MEL-A increase gene transfection mediated by cationic liposomes” Biochemical and Biophysical Research Communications, 289, 1, 57–61 (2001)

    Janssen D.B., Noordman W.H., Wachter J.H.J., Boer G.J., “The enhancement by surfactants of hexadecane degradation by Pseudomonas aeruginosa varies with substrate availability” Journal of Biotechnology, 94, 195–212 (2002)

    Kevin G.R., Mriganka M.G., Zhiu S., “Mineralization enhancement of non-aqueous phase and soil-bound PCB using biosurfactant” Environmental Science and Technology, 34 (1996)

    Kim Y.A., Min J., Lee Y.J., Park H.S., Han S.Y., Jhon G.J., Choi W., “Lysophosphatidylcholine derived from deer antler extract suppresses hyphal transition in Candida albicans through MAP kinase pathway” Molecular and Cell Biology of Lipids, 1531, 1, 77–89 (2001)

    Köhler T., Delden C., Curty L.K., Hamzehpour M.M., Pecher J.C., “Overexpression of the MexEF-OprN multidrug efflux system affects cell-to-cell signaling in Pseudomonas aeruginosa” Journal of Bacteriology, 183, 5213–5222 (2001)

    Lang S., Wullbrandt D., “Rhamnose lipids-biosynthesis, microbial production and application potential” Applied Microbiology and Biotechnology, 51, 22–32 (1999)

    Lang I., “Biological amphiphiles (microbial biosurfactants)” Journal of Colloid and Interface Science, 7, 12–20 (2002)

    Montgomery D.C., “Design and analysis of experiments” John Wiley and Sons, New York. (1984)

    Miller R.M., “Biosurfactant-facilitated remediation of metal contaminated soils” Environmental Health Perspectives, 103, 59–61 (1995)

    Miller R.M., Zhang Y., “Measurement of biosurfactant enhanced solubilization and biodegradation of hydrocarbons” Methods in Biotechnology, 2, 59–66 (1997)

    Miller R.M., Bodour A.A., “Application of a modified drop-collapse technique for surfactant quantitation and screening of biosurfactant-producing microorganisms” Journal of Microbiological Methods, 32, 273–280 (1998)

    Mulligan C.N., Yong R.N., Gibbs B.F., “Heavy metal removal from sediments by biosurfactants” Journal of Hazardous Materials, 85, 111–125 (2001)

    Mulligan C.N., Yong R.N., Gibbs B.F., “Surfactant-enhanced remediation of contaminated soil: a review” Engineering Geology, 60, 371–380 (2001)

    Mulligan C.N., Eftekhari F., “Remediation with surfactant foam of PCP-contaminated soil” Engineering Geology, 70, 269–279 (2003)

    Mulligan C.N., “Environmental applications for biosurfactants” Environmental Pollution, 133, 183–198 (2005)

    Nakahara T., Hisatsuka K., Minoda Y., “Effect of hydrocarbon emulsification on growth and respiration of microorganisms in hydrocarbon media” Journal of Fermentation Technology, 59, 415–418 (1981)

    Noordman W.H., Ji W., Brusseau M.L., Janssen D.B., “Effects of rhamnolipid biosurfactants on removal of phenanthrene from soil” Environmental Science and Technology, 32, 1806–1812 (1998)

    Nadim F., Hoag G.E., Liu S., Carley R.J., Zack P., “Detection and remediation of soil and aquifer systems contaminated with petroleum products: an overview” Journal of Petroleum Science and Engineering, 26, 169–178 (2000)

    Noordman W.H., Brusseau M.L., Janssen D.B., “Adsorption of a multicomponent rhamnolipid surfactant to soil” Environmental Science and Technology, 34, 832–838 (2000)

    Noordman W.H., Johann H.J., Boer G.J., Janssen D.B., “The enhancement by surfactants of hexadecane degradation by Pseudomonas aeruginosa varies with substrate availability” Journal of Biotechnology, 94, 2, 195–212 (2002)

    Ochsner U.A., Reiser J., Fiechter A., Witholt B., “Production of Pseudomonas aeruginosa rhamnolipid biosurfactants in heterologous hosts” Applied and Environmental Microbiology, 61, 3503–3506 (1995)

    Ochsner M., “Prediction of the electronic structure of zinc(II) phthalocyanine with special emphasis on triplet state excitation energies European” Journal of Medicinal Chemistry, 31, 12, 939–950 (1996)

    Ojewale B.A., Ilori M.O., Oyebisi T.O., Akinwumi I.O., “Industry–academic relation: utilization of idle capacities in polytechnics, universities and research organizations by entrepreneurs in Nigeria” Technovation, 21, 10, 695–704 (2001)

    Providenti M.A., Flemming C.A., Lee H., Trevore J.T., “Effect of addition of rhamnolipid biosurfactants or rhamnolipid producing Pseudomonas aeruginosa on phenanthrene mineralization in soil slurries” FEMS Microbiology Ecology, 17, 15–26 (1995)

    Pomponio R., Gotti R., Hudaib M., Cavrini V., “Analysis of phenolic acids by micellar electrokinetic chromatography: application to Echinacea purpurea plant extracts” Journal of Chromatography A, 945, 1, 239–247 (2002)

    Rosenberg M., Gutnick D., Rosenberg E., “Adherence of acteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity” FEMS Microbiology Letters, 9, 29–33 (1980)

    Reiling H.E., Thanei W.U., Guerra L.H., Hirt R., Kappeli O., Fiechter A., “Pilot plant production of rhamnolipid biosurfactant by Pseudomonas aeruginosa” Applied and Environmental Microbiology, 51, 985–989 (1986)

    Rahman K.S.M., Banat I.M., Thahira J., Thayumanavan T., Lakshmanaperumalsamy P., “Bioremediation of gasoline contaminated soil by a bacterial consortium amended with poultry litter, coir pith and rhamnolipid biosurfactant” Bioresource Technology, 81, 25–32 (2002)

    Schenk T., Schuphan I., Schmidt B., “High-performance liquid chromatographic determination of the rhamnolipids produced by Pseudomonas aeruginosa” Journal of Chromatography A, 693, 7–13 (1995)

    Shreve G.A., Lewis N.S., Fajardo A.M., Karp C.D., Kenyon C.N., Pomykal K.E., Tan M.X., “New approaches to solar energy conversion using Si/liquid junctions” Solar Energy Materials and Solar Cells, 38, 1, 279–303 (1995)

    Sim L., Ward O.P., Li Z.Y., “Production and characterization of biosurfactant from Pseudomonas aeruginosa UW-1” Journal of Industrial Microbiology & Biotechnology, 19, 232–238 (1997)

    Stanghellini M.E., Miller R.M., “Biosurfactants: Their identity and potential efficacy in the biological control of zoosporic plant pathogens” Plant Disease, 81, 4–12 (1997)

    Thomson D., “Response surface experimentation” Journal of Food Processing and Preservation, 6, 155–188 (1982)

    Tiehm A., “Degtradation of polycyclic aromatic hydrocarbons in the presence of synthetic surfactants” Applied and Environmental Microbiology, 60, 258–263 (1994)

    Torrens J.L., Herman D.C., Miller, R.M., “Biosurfactant (rhamnolipid) sorption and the impact on rhamnolipid-facilitated removal of cadmium from various solis under saturated flow conditions” Environmental Science and Technology, 32, 776–781 (1998)

    Van D., Gulley S.L., Lee H., Trevors J.T., “Evaluation of microbial surfactants for recovery of hydrophobic pollutants from soil” Journal of Industrial Microbiology, 11, 163–170 (1993)

    Wei Y.H., Chu I.M., “Mn2+ improves surfactin production by Bacillus subtilis” Biotechnology Letters, 24, 479–482 (2002)

    Yates F., “Experimental design: selected papers of frank Yates” Griffin, London. (1970)

    Yeh M.S., Wei Y.H., Chang J.S., “A novel and feasible fermentation strategy to enhance surfactin production from a Bacillus subtilis strain” Biotechnology Progress, in press (2005)

    Zhang Y., Miller R.M., “Enhancement of octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant)” Applied and Environmental Microbiology, 58, 3276–3282 (1992)

    Zhang Y., Miller R.M., “Effect of rhamnolipid (biosurfactant) structure on solubilization and biodegradation of n-alkanes” Applied and Environmental Microbiologyl 61, 2247–2251 (1995)

    Zhang Y., Maier W.J., Miller R.M., “Effect of rhamnolipids on the dissolution, bioavailability, and biodegradation of phenanthrene” Applied and Environmental Microbiology, 31, 2211–2217 (1997)

    王三郎,「應用微生物學」,高立圖書出版有限公司 (2000)

    王正雄,「用途廣泛、環境友善之生物界面活性劑」,環檢雙月刊第44期 (2002)

    王蘭欣,「紅麴菌Monascus pilosus產孢與其天然色素生產之研究」,朝陽科技大學應用化學系,碩士論文 (2002)

    田蔚城,「生物技術的發展與應用」,九州圖書文物有限公司 (1998)

    江政廷,「利用Pseudomonas aeruginosa 4K-1生產之生物表面活性劑開發兩相處理系統之研究」,國立台灣大學農業化學研究所,碩士論文 (1995)

    吳智輝,「Pseudomonas aeruginosa 與 Ralstonia taiwanensis 對重金屬與酚之毒理學與生物復育研究」,國立成功大學化學工程研究所,碩士論文 (2004)

    邱建中、洪武澄,「殺草劑的劑型、表面活性劑與解毒劑」,台中區農推專訊33期 (1984)

    陳國誠,「生物固定化技術與產業應用」,茂昌出版社印行 (2000)

    曹恒光、連大成,「淺談微乳液」,物理雙月刊廿三卷四期 (2001)

    張秋貴,「應用實驗設計法調整蝕刻製程程式以改善晶圓收允測試之接觸窗阻值電性之研究」,中原大學工業工程學系,碩士論文 (2003)

    曾姿錦,「以共聚合乳膠固定化細胞之厭氧產氫醱酵」,國立成功大學化學工程研究所,碩士論文 (2004)

    黃韋誠,「以反應曲面法探討鱈魚魚漿製品最適化之研究」,屏東科技大學食品科學系,碩士論文 (2003)

    劉建宏,「腺苷去胺酶固定於Fe3O4磁性奈米顆粒之研究」,國立中正大學化學工程研究所,碩士論文 (2003)

    魏毓宏,「二價金屬無機鹽類之添加對生物界面活性劑表面素生產之影響」,化工,第48卷第3期 (2001)

    黎正中譯,Montgomery原著,「實驗設計與分析」,高立圖書出版有限公司 (1998)

    下載圖示 校內:立即公開
    校外:2005-07-07公開
    QR CODE