簡易檢索 / 詳目顯示

研究生: 康桂禎
Kang, Guei-Jen
論文名稱: 利用高效液相層析搭配螢光偵測器以研究vardenafil在大白鼠的體內藥物動力學
Investigation on the Pharmacokinetics of Vardenafil in Rats by High-performance Liquid Chromatography with Fluorescence Detection
指導教授: 周辰熹
Chou, Chen-Hsi
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床藥學研究所
Institute of Clinical Pharmacy
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 95
中文關鍵詞: 螢光vardenafil藥物動力學高效液相層析
外文關鍵詞: fluorescence, high-performance liquid chromatography, vardenafil, pharmacokinetics
相關次數: 點閱:123下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   近年來造成藥物交互作用的原因除了考量代謝酵素外,藥物運輸載體的重要性也逐漸受到重視;目前臨床上用於治療男性勃起障礙的PDE5抑制劑有sildenafil、tadalafil與vardenafil三種。其中vardenafil因最晚上市且缺乏其在生物檢品的定量方法,故相關之藥動學與交互作用資料較少。Vardenafil與sildenafil及tadalafil皆為CYP3A受質且在結構上均與cGMP類似;由於cGMP進出細胞會受到藥物運輸蛋白MRP的調節,因此有關MRP等藥物運輸蛋白及CYP3A在vardenafil藥動學與交互作用上的角色是值得加以探討。
      本研究目的首先在開發以螢光偵測器來定量vardenafil在生物體液中的高效能液相層析方法,且實際應用此方法來研究vardenafil在大白鼠體內的藥物動力學,並進一步探討vardenafil之藥物交互作用。
      實驗結果已成功開發一個簡單又靈敏的液相層析方法,經確效後應用在vardenafil血漿與膽汁濃度之定量分析,並研究vardenafil在大白鼠體內的藥物動力學。由劑量依性試驗顯示在靜脈注射2-10 mg/kg下,vardenafil在血漿及膽汁的藥動學呈現線性,且其膽汁濃度遠高於血漿。當vardenafil以靜脈注射2 mg/kg於大白鼠時,若併用Pgp抑制劑cyclosporin A (10 mg/kg) 或verapamil (1 mg/kg) 時,皆會顯著降低vardenafil在血漿中的濃度,而cyclosporin A亦會使vardenafil代謝物之膽汁排除下降。而靜脈注射併用MRP2抑制劑probenecid (50mg/kg)對vardenafil在血漿及膽汁的動力學影響並不顯著。此外當vardenafil以口服20 mg/kg給予大白鼠時,若併服cyclosporin A (10 mg/kg),則會顯著降低其最高血中濃度,而其口服清除率與分佈體積及排除半衰期均增加,顯示cyclosporin A對vardenafil之口服吸收、分佈與排除皆有影響。
      本研究結論認為vardenafil的膽汁排除包含主動分泌並涉及運輸載體之調控;由活體動物實驗顯示Pgp抑制劑cyclosporin A及 verapamil會顯著影響vardenafil的藥動學,而vardenafil同時為一CYP3A受質,因此,造成交互作用的原因須再做進一步的探討。

    Introduction. In addition to the metabolic enzymes, active transport systems have been described for their importance in drug-drug interactions. Currently there are three PDE5 inhibitors, sildenafil, tadalafil and vardenafil, available for the treatment of erectile dysfunction. Vardenafil was the last of the PDE5 inhibitors released into the market. Due to the lack of quantitation methods for vardenafil in biological fluids, the pharmacokinetics of vardenafil has not been studied extensively. Vardenafil and the other PDE5 inhibitors are all CYP3A substrates and they display structure similarity with cGMP. Recent studies suggest that members of the MRP family translocate cGMP across the cell membrane. Therefore, it is of great interest to investigate the role of drug transporters, such as MRP, and CYP3A on the pharmacokinetics of vardenafil.

    Purpose. The aim of this study was to develop a high-performance liquid chromatography method with fluorescence detection to determine the concentration of vardenafil in biological samples, and to apply the method to investigate the pharmacokinetics and drug-drug interactions of vardenafil in rats.

    Results. A simple and sensitive HPLC method for the quantitation of vardenafil in plasma and bile was developed and applied successfully to examine the pharmacokinetics of vardenafil in rats. Following bolus injection of 2-10 mg/kg to rats, the disposition of vardenafil in plasma and bile displayed linearity, and the concentration of vardenafil in bile was greater than that in the plasma. When Pgp inhibitors cyclosporin A (10 mg/kg) and verapamil (1 mg/kg) were given intravenously 10 min before bolus administration of vardenafil (2 mg/kg) to rats, the plasma concentrations of vardenafil were decreased significantly. The presence of cyclosporin A also resulted in a decrease in biliary secretion of a metabolite of vardenafil. On the other hand, the disposition kinetics of vardenafil in plasma and bile following intravenously administration were not altered when co-administered with MRP2 inhibitor probenecid (50 mg/kg). The effect of cyclosporin A (10 mg/kg) on the oral absorption of vardenafil (20 mg/kg) was also explored. Concomitant with cyclosporin A decreased the maximal plasma concentration of vardenafil and increased its oral clearance, volume of distribution and terminal elimination half-life, indicating that cyclosporin A altered the absorption, distribution and elimination of vardenafil.

    Conclusion. In summary, active secretion was involved in the biliary excretion of vardenafil in rats, suggesting that biliary transport of vardenafil may be mediated by drug transporters. Co-administration with Pgp inhibitors cyclosporin A and verapamil changed the pharmacokinetics of vardenafil in rats to various degree, however, the exact mechanisms were not clear and further studies will be needed to fully elucidate the mechanisms of drug-drug interaction for vardenafil.

    摘要……………………………………………………………………… Ⅰ Abstract……………………………………………………………………Ⅲ 致謝……………………………………………………………………… Ⅴ 縮寫表…………………………………………………………………… Ⅵ 目錄……………………………………………………………………… Ⅶ 圖目錄………………………………………………………………… ⅩⅠ 表目錄………………………………………………………………… ⅩⅤ 第壹章 緒論………………………………………………………………1 第一節 前言……………………………………………………… … 1 第二節 磷酸二酯脢簡介………………………… ………………… 3 一. 組織分佈與生理功能……………………… ……………… 3 二. 臨床重要性與應用………………………………………5 第三節 PDE5抑制劑的作用機轉……………………………………5 第四節 PDE5抑制劑的比較……………………………………6 一. 物化性質…………………………………………………6 二. 與PDE5的結合專一性與強度……………………………7 三. 藥物動力學…………………………………………………9 第五節 Vardenafil簡介……………………………………………12 一. 物化性質……………………………………………………12 二. 藥動特性……………………………………………………12 三. 藥效學上的交互作用………………………………………16 四. 藥物動力學上的交互作用…………………………………16 五. 食物對vardenafil的影響…………………………………16 六. 現有分析方法的比較………………………………………17 第六節 藥物運輸蛋白簡介…………………………………………20 一. 藥物運輸蛋白與藥物動力學的關係………………………20 二. ATP-binding cassette運輸蛋白……………………………25 三. 有機陰離子運輸系統………………………………………27 四. 有機陽離子運輸系統………………………………………27 第貳章 研究目的………………………………………………………28 第一節 Vardenafil分析方法的開發與確效………………………28 第二節 Vardenafil在大白鼠的體內藥物動力學…………………29 第三節 Vardenafil藥物交互作用的探討…………………………30 一. 藥物運輸載體對vardenafil的影響………………………30 二. 口服併用vardenafil與cyclosporin A的交互作用…………30 第參章 實驗材料、儀器與方法…………………………………………31 第一節 實驗材料……………………………………………………31 一. 實驗動物……………………………………………………31 二. 藥品與試劑…………………………………………………31 第二節 實驗儀器……………………………………………………32 一. 紫外光/可見光分光光度計………………………………32 二. 螢光分光光度計……………………………………………32 三. 高效液相層析系統…………………………………………32 四. 靜脈插管手術………………………………………………33 五. 繪圖及藥動分析軟體………………………………………35 第三節 實驗方法……………………………………………………35 一. 分析條件最佳化……………………………………………35 二. 藥品定量分析………………………………………………36 三. 代謝物的定性分析…………………………………………37 四. 靜脈注射及口服藥品溶液配製……………………………38 五. 頸靜脈插管手術…………………………………………38 六. 實驗設計…………………………………………………40 七. 數據解析…………………………………………………44 第肆章 實驗結果………………………………………………………46 第一節 Vardenafil分析方法的開發與確效………………………46 一. 分析條件最佳化……………………………………………46 二. 校正曲線……………………………………………………52 三. 確效評估……………………………………………………54 四. 代謝物之定性分析…………………………………………56 第二節 Vardenafil在大白鼠的體內藥物動力學…………………58 第三節 Vardenafil藥物交互作用之探討…………………………68 一. 藥物運輸載體對vardenafil的影響……………………68 二. 口服併用vardenafil與cyclosporin A的交互作用………77 第伍章 討論……………………………………………………………80 第一節 Vardenafil分析方法的開發與確效………………………80 一. 分析條件最佳化……………………………………………80 二. 分析方法的確效……………………………………………80 三. 代謝物之定性分析…………………………………………82 第二節 Vardenafil在大白鼠的體內藥物動力學…………………82 第三節 Vardenafil藥物交互作用之探討…………………………84 一. 藥物運輸載體對vardenafil的影響………………………84 二. 口服併用vardenafil與cyclosporin A的交互作用…………87 第陸章 結論……………………………………………………………89 參考文獻…………………………………………………………………91

    Aboul-Enein HY, Ghanem A, Hoenen H, Determination of vardenafil in pharmaceutical formulation by HPLC using conventional C18 and monolithic silica column. J. Liq. Chromatogr. Relat. Technol. 28:593-604, 2005.

    Akashi M, Tanaka A, Takikawa H. Effect of cyclosporin A on the biliary excretion of cholephilic compounds in rats. Hepatol Res. 34(3):193-8, 2006.

    Ambudkar SV, Dey S, Hrycyna CA, Ramachandra M, Pastan I, Gottesman MM. Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu Rev Pharmacol Toxicol. 39:361-98, 1999.

    Aninat C, Andre F, Delaforge M. Oxidative metabolism by P450 and function coupling to efflux systems: modulation of mycotoxin toxicity. Food Addit Contam. 22(4):361-8, 2005.

    Ayrton A, Morgan P. Role of transport proteins in drug absorption, distribution and excretion. Xenobiotica. 31(8-9):469-97, 2001.

    Bischoff E. Vardenafil preclinical trial data: potency, pharmacodynamics, pharmacokinetics, and adverse events. Int J Impot Res.16 Suppl 1:S34-7, 2004.

    Blount MA, Beasley A, Zoraghi R, Sekhar KR, Bessay EP, Francis SH, Corbin JD. Binding of tritiated sildenafil, tadalafil, or vardenafil to the phosphodiesterase-5 catalytic site displays potency, specificity, heterogeneity, and cGMP stimulation. Mol Pharmacol. 66: 144–52, 2004.

    Briganti A, Salonia A, Gallina A, Sacca A, Montorsi P, Rigatti P, Montorsi F. Drug Insight: oral phosphodiesterase type 5 inhibitors for erectile dysfunction. Nat Clin Pract Urol. 2(5):239-47, 2005.

    Carson CC, Lue TF. Phosphodiesterase type 5 inhibitors for erectile dysfunction. BJU Int. 96(3):257-80, 2005.

    Corbin JD, Blount MA, Weeks JL 2nd, Beasley A, Kuhn KP, Ho YS, Saidi LF, Hurley JH, Kotera J, and Francis SH. [3H]Sildenafil binding to phosphodiesterase-5 is specific, kinetically heterogeneous and stimulated by cGMP. Mol Pharmacol. 63: 1364-1372, 2003.

    Dautrey S, Felice K, Petiet A, Lacour B, Carbon C, Farinotti R. Active intestinal elimination of ciprofloxacin in rats: modulation by different substrates. Br J Pharmacol. 127(7):1728-34, 1999.

    Davies, B, Morris, T, Physiological parameters in laboratory animals and humans. Pharm. Res. 10, 1093–95, 1993.

    Dietrich CG, Geier A, Oude Elferink RP. ABC of oral bioavailability: transporters as gatekeepers in the gut. Gut. 52(12):1788-95, 2003.

    Dresser GK, Bailey DG, Leake BF, Schwarz UI, Dawson PA, Freeman DJ, Kim RB. Fruit juices inhibit organic anion transporting polypeptide-mediated drug uptake to decrease the oral availability of fexofenadine. Clin Pharmacol Ther. 71(1):11-20, 2002.

    Funakoshi S, Murakami T, Yumoto R, Kiribayashi Y, Takano M. Role of P-glycoprotein in pharmacokinetics and drug interactions of digoxin and beta-methyldigoxin in rats. J Pharm Sci. 92(7):1455-63, 2003.

    Gratz SR, Flurer CL, Wolnik KA. Analysis of undeclared synthetic phosphodiesterase-5 inhibitors in dietary supplements and herbal matrices by LC-ESI-MS and LC-UV. J Pharm Biomed Anal. 36(3):525-33, 2004.

    Gupta M, Kovar A, Meibohm B. The clinical pharmacokinetics of phosphodiesterase-5 inhibitors for erectile dysfunction. J Clin Pharmacol. 45(9):987-1003, 2005.

    Hemnes AR, Champion HC Sildenafil, a PDE5 inhibitor, in the treatment of pulmonary hypertension. Expert Rev Cardiovasc Ther. 4(3):293-300, 2006.

    Jedlitschky G, Burchell B, Keppler D. The multidrug resistance protein 5 functions as an ATP-dependent export pump for cyclic nucleotides. J Biol Chem. 275(39):30069-74, 2000.

    Konig J, Nies AT, Cui Y, Leier I, Keppler D. Conjugate export pumps of the multidrug resistance protein (MRP) family: localization, substrate specificity, and MRP2-mediated drug resistance. Biochimica Biophysica Acta. 1461:377-94, 1999.

    Li L, Lee TK, Meier PJ, Ballatori N. Identification of glutathione as a driving force and leukotriene C4 as a substrate for oatp1, the hepatic sinusoidal organic solute transporter. J Biol Chem. 273(26):16184-91, 1998.

    Marier JF, Deschenes JL, Hage A, Seliniotakis E, Gritsas A, Flarakos T, Beaudry F, Vachon P. Enhancing the uptake of dextromethorphan in the CNS of rats by concomitant administration of the P-gp inhibitor verapamil. Life Sci. 77(23):2911-26, 2005.

    Meijer DKF, Smit JW and Muller M. Hepatobiliary elimination of cationic drugs: therole of P-glycoproteins and other ATP-dependent transporters. Adv Drug Deliv Rev. 25:159-200, 1997.

    Rajagopalan P, Mazzu A, Xia C, Dawkins R, Sundaresan P. Effect of high-fat breakfast and moderate-fat evening meal on the pharmacokinetics of vardenafil, an oral phosphodiesterase-5 inhibitor for the treatment of erectile dysfunction. J Clin Pharmacol. 43(3):260-7, 2003.

    Rodriguez Flores J, Berzas Nevado JJ, Castaneda Penalvo G, Mora Diez N. Development of a capillary zone electrophoretic method to determine six antidepressants in their pharmaceutical preparations. Experimental design for evaluating the ruggedness of method. J Sep Sci. 27(1-2):33-40, 2004.

    Sager G. Cyclic GMP transporters. Neurochem Int. 45(6):865-73, 2004.

    Schwarz UI, Gramatte T, Krappweis J, Berndt A, Oertel R, von Richter O, Kirch W.Unexpected effect of verapamil on oral bioavailability of the beta-blocker talinolol in humans. Clin Pharmacol Ther. 65(3):283-90, 1999.

    Schinkel AH, Jonker JW., Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev. 21;55(1):3-29, 2003.

    Shi X, Bai S, Ford AC, Burk RD, Jacquemin E, Hagenbuch B, Meier PJ, Wolko AW. Stable inducible expression of a functional rat liver organic anion transport protein in HeLa cells. J Biol Chem. 270(43):25591-5, 1995.

    Shitara Y, Sato H, Sugiyama Y. Evaluation of drug-drug interaction in the hepatobiliary and renal transport of drugs. Annu Rev Pharmacol Toxicol. 45:689-723, 2005.

    Shin HS, Bae SK, Lee MG. Pharmacokinetics of sildenafil after intravenous and oral administration in rats: Hepatic and intestinal first-pass effects. Int J Pharm. 320(1-2):64-70, 2006.

    Sparreboom A, van Asperen J, Mayer U, Schinkel AH, Smitt JW, Meijer DK, Borst P, Nooijen WJ, Beijnen JH, van Tellingen O. Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine. Proc Natl Acad Sci USA. 94: 2031–2035, 1997.

    Tamai I, Nezu J, Uchino H, Sai Y, Oku A, Shimane M, Tsuji A. Molecular identification and characterization of novel members of the human organic anion transporter (OATP) family. Biochem Biophys Res Commun. 273(1):251-60, 2000.

    Treiber A, Schneiter R, Delahaye S, Clozel M. Inhibition of organic anion transporting polypeptide-mediated hepatic uptake is the major determinant in the pharmacokinetic interaction between bosentan and cyclosporin A in the rat. J Pharmacol Exp Ther. 308(3):1121-9, 2004.

    Wang JC, Liu XY, Lu WL, Chang A, Zhang Q, Goh BC, Lee HS. Pharmacokinetics of intravenously administered stealth liposomal doxorubicin modulated with verapamil in rats. Eur J Pharm Biopharm. 62(1):44-51, 2006.

    Wetterich U, Spahn-Langguth H, Mutschler E, Terhaag B, Rosch W, Langguth P. Evidence for intestinal secretion as an additional clearance pathway of talinolol enantiomers: concentration and dose-dependent absorption in vitro and in vivo. Pharm Res. 13(4):514-22, 1996.

    Yamazaki M, Akiyama S, Nishigaki R, Sugiyama Y. Uptake is the rate-limiting step in overall hepatic elimination of pravastatin at steady-state in rats. Pharm Res. 13:1559-1564, 1996a.

    Yamazaki M, Suzuki H, Sugiyama Y. Recent advances in carrier-mediated hepatic uptake and biliary excretion of xenobiotics. Pharm Res. 13:497-513, 1996b.

    Zhou S, Yung Chan S, Cher Goh B, Chan E, Duan W, Huang M, McLeod HL. Mechanism-based inhibition of cytochrome P450 3A4 by therapeutic drugs. Clin Pharmacokinet. 44(3):279-304, 2005.
    Zhu X, Xiao S, Chen B, Zhang F, Yao S, Wan Z, Yang D, Han H. Simultaneous determination of sildenafil, vardenafil and tadalafil as forbidden components in natural dietary supplements for male sexual potency by high-performance liquid chromatography-electrospray ionization mass spectrometry. J Chromatogram A. 1066(1-2):89-95, 2005.

    Zou P, Oh SS, Hou P, Low MY, Koh HL. Simultaneous determination of synthetic phosphodiesterase-5 inhibitors found in a dietary supplement and pre-mixed bulk powders for dietary supplements using high-performance liquid chromatography with diode array detection and liquid chromatography-electrospray ionization tandem mass spectrometry. J Chromatogr A. 1104(1-2):113-22, 2006.

    下載圖示 校內:2011-08-25公開
    校外:2011-08-25公開
    QR CODE