簡易檢索 / 詳目顯示

研究生: 陳偉宏
Chen, Wei-Hong
論文名稱: 單聲響和諧性與複雜性的大腦感知: 以音樂家、一般健康者、精神分裂症患者為對象
Perceptive Processing of Musical Consonance and Sound Complexity among Musicians, Non-musicians and Patients with Schizophrenia: An Event-related Potential and Behavioral Study
指導教授: 梁勝富
Liang, Shen-Fu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 84
中文關鍵詞: 和諧性聲音複雜性事件相關電位大腦可塑性精神分裂症
外文關鍵詞: consonance, sound complexity, ERPs, brain plasticity, schizophrenia
相關次數: 點閱:127下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 專業音樂家或特定腦區受損的病患近年來被視為是用於檢驗神經系統理論和發展評估疾病系統的對象。在本研究中,我們透過對正常人的比較去探討兩個特殊的族群,一是腦部對於聽覺特化的音樂家,二是有聽覺相關腦區缺損的精神分裂症患者。透過分析大腦皮質上對於單聲響和諧性與複雜性上的差異,去探討大腦可塑性以及精神分裂症對於聽覺腦區造成的缺損。
    在行為實驗中,我們發現精神分裂症患者對於刺激的反應比正常人來的慢。這個延遲現象表示精神分裂症可能造成某些信息處理功能缺損。在事件相關電位實驗中,精神分裂症患者在 N1和P2的活化均較正常人來的弱。這些結果顯示精神分裂症可能影響聽覺處理或造成顳葉功能障礙。對於聲音複雜性而言,健康者在聽到和弦刺激時比起聽到音程刺激引起較強的N1活化。然而,精神分裂症患者在聽到和弦與音程刺激時卻表現出相似的活化,推測精神分裂症亦影響處理聲音複雜性的相關功能。對於音樂和諧性而言,無論在和弦或是音程,音樂家在聽到和諧的刺激比起聽到不和諧的刺激引起較強的P2活化。推測音樂家可能將聲音的和諧性反應於P2上。此外,音樂家相對於正常人表現出較強的P2活化。由於音樂家長期接受專業的音樂訓練,推測此強化的現象可能來自於大腦可塑性的影響。
    本研究不僅提供了腦皮質處理音樂和諧性與聲音複雜性的相關資訊。同時,也提供了有關大腦可塑性以及精神分裂症的相關結果。我們發現,精神分裂症在患者腦部所造成的缺損反應出較弱的腦波成分,而大腦可塑性在音樂家造成的改變反應出較強的腦波成分。相信本研究結果可以幫助未來發展診斷協助、臨床上協助追踪病症變化或更深入研究的參考。在未來,結合腦電圖(EEG)和功能性磁振造影(fMRI)的同步記錄相信能夠獲得更精確的資訊或進一步的去了解病患在大腦結構上缺損的情況或音樂家於大腦可塑性的變化。

    Professional musician or individual who has neuropsychiatric disorders to specific brain regions has long been used to test theories or develop assessment system for illness. In this study, we used both specific groups, musician, whose brain are highly specialized in auditory, and schizophrenia patient, who are neuropsychiatric disordered, compared with normal subject to find out the brain plasticity in musician and the auditory processing deficits in schizophrenia patients by behavioral and electrophysiological measuring the cortical processing of musical consonance and sound complexity.
    In behavior experiment, schizophrenia patients showed slower respond to the stimuli than normal subjects. This delay indicated that the disease may impair some function of information processing in schizophrenia patients. In ERPs experiment, schizophrenia patients showed reduced N1 and P2 compared with normal subjects. These evidences may implicate auditory processing deficits or temporal lobe dysfunction in schizophrenia patients. For sound complexity, healthy subjects showed stronger negative N1 when triads were presented than intervals were presented. However, schizophrenia patients showed similar N1 activity for triads and intervals stimuli, indicated that the disease may also impair associated cortical processing of sound complexity. For musical consonance, musicians showed stronger positive P2 when consonant stimuli were presented than dissonant stimuli were presented for both triads and intervals, indicated that P2 component may reflect the degree of consonance for musicians. In addition, musicians showed stronger positive P2 than normal subjects. Because of their long-term musical training, this enhancement of P2 may be due to the brain plasticity effect.
    In summary, this study provided some information about cortical processing of musical consonance and sound complexity. It also revealed some biological basis of brain plasticity and illness. We found that the reduced component may reflect the deficits in schizophrenia patients and enhanced component may reflect the brain plasticity in musicians. Our results may be useful for developing diagnosis assistance, tracking changes in clinical symptoms, or helping further researching. In the future, combination of EEG and fMRI recordings might able to obtain more precise information or further new insights of the brain structural deficit in patients or enhancement in musicians.

    Chapter 1 Introduction 1 1.1 Research background 2 1.1.1 Pitch 2 1.1.2 Musical consonance 3 1.1.3 Brain plasticity 5 1.1.4 Schizophrenia 6 1.1.5 The auditory event-related potential (AEP) 7 1.1.6 Current researches of musical consonance 7 1.1.7 Current researches of schizophrenia 9 1.2 Research motivation 10 1.3 Research goal 11 Chapter 2 Materials and methods 12 2.1 Environment of Human Music-Perception Experiment 12 2.2 Subjects 14 2.3 Stimuli 17 2.4 Experiment Design 20 2.4.1 Behavior Experiment 21 2.4.2 ERPs Experiment 22 2.5 EEG recordings and data analysis 23 2.6 Source analysis 24 2.7 Statistical analysis 25 Chapter 3 Experiment Results 26 3.1 Behavior experiment: percentages of hit rate and response time 26 3.2 ERPs: the amplitude of N1, P2 and N2 components 28 3.3 Source analysis 45 Chapter 4 Discussions 52 4.1 Behavior data 52 4.2 Auditory event-related potential and source localizations 53 4.2.1 Abnormal subject vs. normal subject 53 4.2.2 Brain plasticity 55 4.2.3 Triad vs. Interval 57 4.2.4 N2 component 57 Chapter 5 Conclusions 59 References 61 Appendix I – PANSS 67 Appendix II – Component latency 68 Appendix III – Correlation between ERP amplitude and response time 71 Appendix IV – Roughness analysis 74 Appendix V – Correlation between ERP amplitude and PANSS 78 Appendix VI – Consonance ERP between groups 80

    Ahveninen, J., Jääskeläinen, I. P., Osipova, D., Huttunen, M. O., Ilmoniemi, R.J., Kaprio, J., Lonnqvist, J., Manninen, M., Pakarinen, S., Therman, S., Näätänen, R., Cannon, T. D., “Inherited auditory-cortical dysfunction in twin pairs discordant for schizophrenia,” Biological Psychiatry, Vol. 60, pp. 612–620, 2006.
    Amunts, K., Schlaug, G., Jancke, L., Steinmetz, H., Schleicher, A., Dabringhaus A., Zilles, K., “Motor cortex and hand motor skills: structural compliance in the human brain,” Human Brain Mapping, Vol. 5, No. 3, pp. 206–215, 1997.
    Andreasen NC., ”Symptoms, signs, and diagnosis of schizophrenia,” Lancet , Vol.346, pp. 477–81, 1995.
    Anon., ”The Oxford Dictionary of Music,” 2nd edition, edited by Michael Kennedy. Oxford & New York: Oxford University Press, 1994.
    Alain, C., Cortese, F., Bernstein, L.J., He, Y., Zipursky, R.B., “Auditory feature conjunction in patients with schizophrenia,” Schizophrenia Research, Vol. 49, pp. 179–191, 2001.
    Anne-Marie Shelley, Gail Silipo, Daniel C. Javitt, “Diminished responsiveness of ERPs in schizophrenic subjects to changes in auditory stimulation parameters: implications for theories of cortical dysfunction,” Schizophrenia Research, Vol.37, pp. 65–79, 1999.
    Atienza, M., Cantero, J. L., and Dominguez-Marin, E., “The time course of neural changes underlying auditory perceptual learning,” Learning & Memory, Vol. 9, No. 3, pp. 138–150, 2002.
    Baribeau-Braun, J., Picton, T.W., Gosselin, J.Y., “Schizophrenia: a neurophysiological evaluation of abnormal information processing,” Science, Vol. 219, pp. 874–876, 1983.
    Bigand, E., Parncutt, R., Lerdahl, J., ”Perception of musical tension in short chord sequences: the influence of harmonic function, sensory dissonance, horizontal motion, and musical training,” Perception and Psychophysics, Vol.58, pp. 125–141, 1996.
    Bosnyak, D. J., Eaton, R. A., and Roberts, L. E., “Distributed auditory cortical representations are modified when non-musicians are trained at pitch discrimination with 40 Hz amplitude modulated tones,” Cerebral Cortex, Vol. 14, No. 10, pp. 1088–1099, 2004.

    Boutros NN, Korzyukov O, Oliwa G, et al., ”Morphological and latency abnormalities of the mid-latency auditory evoked responses in schizophrenia: a preliminary report,” Schizophrenia Research, Vol.70, pp.303–313, 2004.
    Clunas, N. J., Ward, P.B., “Auditory recovery cycle dysfunction in schizophrenia: a study using event-related potentials,” Psychiatry Research, Vol.136, pp. 17–25, 2005.
    Daniele Schön, Mireille Besson, “Processing pitch and duration in music reading: A RTs and ERPs study,” Neuropsychologia, Vol. 40, pp. 868–878, 2002.
    Davis, H., Mast, T., Yoshie, N., Zerlin, S., “The slow response of the human cortex to auditory stimuli: recovery process,” Electroencephalography and Clinical Neurophysiology, Vol. 21, pp. 105–113, 1966.
    Gallinat, J., Mulert, C., Bajbouj, M., Herrmann, W. M., Schunter, J., Senkowski, D., Moukhtieva, R., Kronfeldt, D., Winterer, G., “Frontal and temporal dysfunction of auditory stimulus processing in schizophrenia,” Neuroimage, Vol. 17, pp. 110–127, 2002.
    Garca-Larrea, L., Lukaszewicz, A. C., and Mauguire, F., “Revisiting the oddball paradigm. non-target v.s. neutral stimuli and the evaluation of ERP attentional effects,” Neuropsychologia, Vol. 30, No. 8, pp.723–741, 1992.
    Gerard Bruder, Jürgen Kayser, Craig Tenke, Xavier Amador, Michelle Friedman, Zafar Sharif, Jack Gorman, ”Left Temporal Lobe Dysfunction in Schizophrenia,” Arch Gen Psychiatry, Vol. 56, pp. 267–276,1999.
    Gutschalk, A., Patterson, R. D., Rupp, A., Uppenkamp, S., and Scherg, M., “Sustained magnetic fields reveal separate sites for sound level and temporal regularity in human auditory cortex,” Neuroimage, Vol. 15, No. 1, pp. 207–216, 2002.
    Hari R, Aittoniemi K, Jarvinen ML, Katila T, Varpula T., ”Auditory evoked transient and sustained magnetic fields of the human brain,” Localization of neural generators. Exp Brain Res, Vol. 40, pp. 237–40, 1980.
    Hebb, D. O., “The organization of behavior,” New York: Wiley, 1949.
    Helmholtz, H. L. M., “On the sensations of tone as a physiological basis for the theory of music,” edited by Ellis AJ. New York: Dover, 1954.
    Hillyard, S. A., Hink, R. F., Schwent, V. L., Picton, T. W., “Electrical signs of selective attention in the human brain,” Science, Vol.182, pp. 177– 180, 1973.
    Hutchinson, S., Lee, L. H., Gaab, N., and Schlaug, G., “Cerebellar volume of musicians” cerebral cortex, Vol. 13, No. 9, pp. 943–949, 2003.
    Itoh, K., Miyazaki, K. and Nakada, T., “Ear advantage and consonance of dichotic pitch intervals in absolute-pitch possessors,” Brain and Cognition, Vol. 53, pp. 464–471, 2003a.

    Itoh, K., Suwazono, S., and Nakada, T., “Cortical processing of musical consonance: an evoked potential study,” Neuroreport, Vol. 14, No. 18, pp. 2303-2306, 2003b.
    Jablensky A.,”Schizophrenia: recent epidemiologic issues,” Epidemiol Rev, Vol.17 pp.10–20, 1995.
    Javitt Daniel C., Shelley Anne-Marie and Ritter Walter, “Associated deficits in mismatch negativity generation and tone matching in schizophrenia, ”Clinical Neurophysiology, Vol. 111, pp.1733–1737, 2000.
    Johansson, B. B., “Music and brain plasticity,” European Review, Vol. 14, pp. 49–64, 2006.
    Kay S. R., Fiszbein A., Opler L. A., “The Positive and Negative Syndrome Scale (PANSS) for schizophrenia,” Schizophrenia bulletin, Vol. 13, pp.261–276, 1987.
    Keidel, W.D., Spreng, M., ”Neurophysiological evidence for the Stevens power function in man,” Journal of the Acoustical Society America, Vol. 38, pp. 191–195, 1965.
    Kiehl, K. A., Liddle, P. F.,” An event-related functional magnetic resonance imaging study of an auditory oddball task in schizophrenia,” Schizophrenia Research, Vol. 48, pp. 159–171, 2001
    Koelsch S. and Siebel W. A., “Towards a neural basis of music perception,” Trends in Cognitive Science, Vol. 9, pp. 578–584, 2005.
    Koelsch, S., Schröger, E., and Tervaniemi, M., “Superior attentive and pre-attentive auditory processing in musicians,” Neuroreport, Vol. 10, No. 6, pp. 1309-1313, l999.
    Metzger, R. L., Werner, D. B., “Use of visual training for reading disabilities: a review,” PEDIATRICS, Vol. 76, No. 6, pp. 824–829, 1984.
    Mucci, A., Galderisi, S., Kirkpatrick, B., Bucci, P., Volpe, U., Merlotti, E., Centanaro, F., Catapano, F., Maj, M., “Double dissociation of N1 and P3 abnormalities in deficit and nondeficit schizophrenia,” Schizophrenia Research, Vol. 92, pp. 252–261, 2007.
    Munte, T. F., Altenmuller, E., and Jancke, L., “The musician’s brain as a model of neuroplasticity,” Nature Reviews Neuroscience,Vol. 96, pp. 473–478, 2002.
    Nash, A.J., Williams, C.S., “Effects of preparatory set and task demands on auditory event-related potentials,” Biological Psychology, Vol. 15, pp. 15–31, 1982.
    Neukirch, M., Hegerl, U., Kötitz, R., Dorn, H., Gallinat, J., Herrmann, W.M., and Gallinat, U., “Comparison of the amplitude/intensity function of the auditory evoked N1m and N1 components.” Neuropsychobiology, Vol. 45, pp. 41–48, 2002.
    O'Donnell, B. F., Hokama, H., McCarley, R. W., Smith, R. S., Salisbury, D.F., Mondrow, E., Nestor, P.G., Shenton, M. E., “Auditory ERPs to non-target stimuli in schizophrenia: relationship to probability, task-demands, and target ERPs,” International Journal of Psychophysiology, Vol. 17, pp. 219–231, 1994.

    PA American, “Diagnostic and statistical manual of mental disorders,” American Psychiatric Association: Washington DC, 1994.
    Pantev, C., Oostenveld, R., Engelien, A., Ross, B., Roberts, L. E., Hoke, M., “Increased auditory cortical representation in musicians,” Nature, Vol. 392, pp.811–814, 1998.
    Pantev, C., Roberts, L. E., Schulz, M., Engelien, A., and Ross, B., ”Timbre-specific enhancement of auditory cortical representations in musicians,” NeuroReport, Vol. 22, No. 1, pp. 169–174, 2001.
    Pantev, C., Wollbrink, A., Roberts, L. E., Engelien, A., and Lütkenhoner, B., “Short-term plasticity of the human auditory cortex,” Brain Research, Vol. 12, No. 3, pp. 479–485, 1999.
    Penagos, H., Melcher, J. R., and Oxenham, A. J., “A neural representation of pitch salience in nonprimary human auditory cortex revealed with functional magnetic resonance imaging,” The Journal of Neuroscience, Vol. 24, No. 30, pp. 6810–6815, 2004.
    Peretz, I., Blood, A., Penhune, V., Zatorre, R., “Cortical deafness to dissonance,” Brain, Vol. 124, pp. 928–940, 2001.
    Perrault, N., Picton, T.W., “Event-related potentials recorded from the scalp and nasopharynx: I. N1 and P2,” Electroencephalography and Clinical Neurophysiology, Vol. 59, pp. 177–194, 1984.
    Picton TW, Stuss DT, Champagne SC, Nelson RF.,”The effects of age on human event-related potentials,” Psychophysiology, Vol. 21, pp. 312–25, 1984.
    Plomp, R. and Levelt, W. J., “Tonal consonance and critical bandwidth,” The Journal of the Acoustical Society of America, Vol. 38, No. 4, pp. 548–560, 1965.
    Pritchard, W. S., Shappell, S. A., and Brandt, M. E., “Psychophysiology of N200/N400: A review and classification scheme,” Advances in Psychophysiology, pp. 43–106, 1991.
    Regnault, P., Bigand, E., and Besson, M., “Different brain mechanisms mediate sensitivity to sensory consonance and harmonic context: Evidence from auditory Event Related brain Potentials,” Journal of Congitive Neuroscience, Vol. 13, pp. 241–255, 2001.
    Ritter, W., Simson, R., Vaughan, H. G., and Friedman, D., “A brain event related to the making of sensory discrimination,” Science, Vol. 203, No. 4387, pp. 1359–1361, 1979.
    Roth, W.T., Goodale, J., Pfefferbaum, A., “Auditory event-related potentials and electrodermal activity in medicated and unmediated schizophrenics,” Biological Psychiatry, Vol. 29, pp. 585–599, 1991.

    Saletu, B., Itil, T.M., Saletu, M., ”Auditory evoked response, EEG, and thought process in schizophrenics,” American Journal of Psychiatry, Vol.128, pp. 336–344, 1971.
    Sartorius N, Jablensky A, Korten A, Ernberg G, Anker M, Cooper JE, Day R., “Early manifestations and first-contact incidence of schizophrenia in different cultures. A preliminary report on the initial evaluation phase of the WHO Collaborative Study on determinants of outcome of severe mental disorders,” Psychological Medicine, Vol. 4, 909-28, 1986
    Schellenberg, E. G. and Trehub, S. E., “Frequency ratios and the perception of tone patterns,” Psychonomic Bulletin and Review, Vol. 1, No. 2, pp. 191–201, 1994.
    Scherg, M. and Von Cramon, D., “Two bilateral sources of the late AEP as identified by a spatiotemporal dipole model,” Electroenceph. Clin. Neurophysiol., Vol. 62, pp. 32–44, 1985.
    Scherg, M. and Von Cramon, D., “Evoked dipole source potentials of the human auditory cortex,” Electroenceph. clin. Neurophysiol,” Vol.65, pp. 344–360, 1986.
    Schneider, P., Scherg, M., Dosch, H. G., Specht, H. J., Gutschalk, A., and Rupp, A., “Morphology of Heschl’s gyrus reflects enhanced activation in the auditory cortex of musicians,” Nature Neuroscience, Vol.5, pp. 688–694, 2002.
    Shahin, A., Bosnyak, D. J., Trainor, L. J., and Roberts, L. E., “Enhancement of neuroplastic P2 and N1c auditory evoked potentials in musicians,” The Journal of Neuroscience, Vol. 23, No.13, pp. 5545–5552, 2003.
    Steinbeis, N., Koelsch, S., “Shared neural resource between music and language indicate semantic processing of musical tension-resolution patterns,” Cerebral Cortex, Vol. 18, No. 5, pp. 1169–1178, 2007.
    Terhardt, E., “Pitch, consonance, and harmony,” The Journal of the Acoustical Society of America, Vol. 55, No.5, pp. 1061–1069, 1974.
    Terhardt, E., “The concept of musical consonance: A link between music and psychoacoustics,” Music Perception, Vol. 1, pp. 276–295, 1984.
    Tervaniemi, M., Just, V., Koelsch, S., Widmann, A., and Schroger, E., “Pitch discrimination accuracy in musicians vs nonmusicians: An event-related potential and behavioral study,” Experimental Brain Research, Vol. 161, No.1, pp. 1–10, 2005.
    Timm Rosburg, Nash N., Boutros b, Judith M. and Ford, “Reduced auditory evoked potential component N100 in schizophrenia — A critical review,” Psychiatry Research, 2008.
    Todd, J., Michie, P. T., Budd, T. W., Rock, D., Jablensky, A. V., “Auditory sensory memory in schizophrenia: inadequate trace formation?” Psychiatry Research, Vol. 96, pp. 99–115, 2000.

    Umbricht, D., Koller, R., Schmid, L., Skrabo, A., Grubel, C., Huber, T., Stassen, H., “How specific are deficits in mismatch negativity generation to schizophrenia?” Biological Psychiatry, Vol. 53, 1120–1131, 2003.
    Woods, D. L., Knight, R. T., Scabini, D., “Anatomical substrates of auditory selective attention: behavioral and electrophysiological effects of posterior association cortex lesions,” Cognitive Brain Research, Vol.1, pp. 227–240, 1993.
    Zatorre R. J., Chen J. L. and Penhune V. B., “When the brain plays music: auditory–motor interactions in music perception and production,” Nature Reviews Neuroscience,Vol. 8, pp. 547–558, 2007.

    下載圖示 校內:2013-08-23公開
    校外:2013-08-23公開
    QR CODE