| 研究生: |
黃致崴 Huang, Chih-wei |
|---|---|
| 論文名稱: |
以常壓電漿在光學塑膠基板上沉積氧化矽薄膜之研究 The study of SiOx thin-film deposited on optical plastic substrate by atmospheric plasma |
| 指導教授: |
陳進成
Chen, Chin-Cheng |
| 共同指導教授: |
洪昭南
Hong, C.-N. Franklin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 常壓電漿 、高親水表面 、抗沾粘表面 、氧化矽薄膜 |
| 外文關鍵詞: | Atmospheric Plasma, Hydrophilic Surface, Anti-stick surface, SiOx thin-film |
| 相關次數: | 點閱:78 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究建立一套連續式常壓電漿系統來進行光學塑膠基材上之表面處理。在一大氣壓下產生電漿進行表面處理是一種經濟、高效率的低溫表面處理方式。常壓電漿較真空電漿之優點為:可在大氣壓下操作(不需真空腔體)、容易以連續捲對捲製程方式操作、與其他機台整合容易,因此可大幅降低設備、操作及維修費用,並且可省能源、電漿密度高、粒子能量低、處理速度快等。
本實驗以HMDSO做為前驅物,利用PECVD的方式在光學塑膠PC、PMMA上製備氧化矽薄膜。主要研究有兩個方向,其一是研究影響薄膜與基材附著力之條件。其二是探討不同製程對薄膜化學組成之影響。
本實驗藉由改變鍍膜的參數(Carrier gas流量、Scan speed、鍍膜距離、鍍膜時間)及不同的製程方式,來調變氧化矽薄膜之厚度、表面性質與化學元素組成。最後,我們能使表面具有高親水性(水接觸角小於五度)或超高抗沾粘性(水接觸角大於一百度)。本實驗已成功在PC基板上沉積附著力佳的氧化矽薄膜,且經由疏水改質後,其可承受的磨耗次數達3000下。
This study established a set of continuous atmospheric pressure plasma system, treating surface for optical plastic substrate .The atmospheric plasma surface treatment is an economic and efficient method for low temperature surface treatment. Compared with the low-pressure plasma treatment, the atmospheric plasma chemical vapor deposition owns many advantages including atmospheric operation, in-line operation, no vacuum equipment needed, good compatibility with other processes, low equipment ,operation and maintenance cost, and high throughputs.
In this experiment, HMDSO is a SiOx thin-film precursor which is deposed on optical plastic PC, PMMA substrate by PECVD. The study focus on two aspects, one is to study factors which affect the film and substrate adhesion; the second is to explore the impact of operation process on the chemical composition of the film.
In this study, by controlling the coating parameters (Carrier gas flow, Scan speed, distance coated, coating time) and using different fabrication processes which modulating the thickness of SiOx films, various types of film with different surface properties and chemical composition are obtained. The surface can be highly hydrophilic (water contact angle of less than 5 degrees) or ultra-high anti-adhesion properties (water contact angle greater than 100 degrees).
This experiment has been successfully deposited SiOx films of good adhesion on the PC substrate, and after modifying by hydrophobic process, it can withstand abrasion test up to 3000 times.
[1] 董家齊、陳寬任:科學發展,第354 期, 2002 年6 月,p52~p59
[2] 賴耿陽編譯:電漿工學的基礎,復文書局 (2002)
[3] 高信敬,常壓電漿在機能性表面處理的技術與應用,化工資訊與商情,2006年,.32期,p.22。
[4] 羅萬中、林昭憲、高于迦、蔣啟明:電機月刊,第17 卷,第11 期,
2007 年11 月,p140~p149
[5] B. Balu, V. Breedveld ,D.W. Hess, “Fabrication of “Roll-off” and “Sticky” Superhydrophobic Cellulose Surfaces via Plasma Processing,” Langmuir 24(2008) 4785.
[6] K. Teshima, H. Sugimura, Y. Inoue, O. “Takai, Gas Barrier Performance of Surface-Modified Silica Films with Grafted Organosilane Molecules,” Langmuir 19(2003) 8331.
[7] G.R. Nowling, M. Yajima, S.E. Babayan, M. Moravej, X. Yang, W. Hoffman, R.F.Hicks, “Chamberless plasma deposition of glass
coatings on plastic ,” Plasma Sources Sci. Technol. 14 (2005) 477.
[8] R.P. Winkler, E. Arpac, H. Schirra, S. Sepeur, I. Wegner, H. Schmidt, “Aqueous wet coatings for transparent plastic glazing, ” Thin Solid Films351 (1999) 209.
[9] Barbalace, Kenneth. Periodic Table of Elements. Environmental Chemistry.com, 2007-04-14.
[10] 王執明,塵肺症所關切的礦石:矽石類礦物,行政院勞委會(1989)
[11] CRC Handbook of Chemistry and Physics 2012-2013
[12] 劉世鈞,利用水熱法在低溫條件下合成多晶相二氧化矽奈米結構之研究,國立台南大學材料科學研所,2007
[13]J. R. Roth, Industrial Plasma Engineering-Volume 1 : Principles, Institute of Physics Publishing, London (1995).
[14] W. Elenbaas, The High Pressure Mercury Vapor Discharge. Amsterdam,The Netherlands, North-Holland (1951)
[15] 郭有斌,微中空陰極陣列常壓電漿與低溫成長碳奈米結構,成功大學化學工程研究所博士論文,2003年。
[16]U. Reitz, J.G.H. Salage, R. Schwarz, “Pulsed barrier discharges for thin film production at atmospheric pressure, ” Surface and Coatings Technology 59 (1993) 144.
[17]J.S. Chang, P.A. Lawless, T. Yamamoto, “Corona Discharge Processes, ”IEEE Trans. Plasma Sci. 19 (1991) 1152.
[18]S. Kanazawa, H. Kogoma, T. Moriwaki, S. Okazaki, “Stable glow plasma at atmospheric pressure,” J. Phys. D 21 (1988) 838.
[19] T. Yokoyawa, M. Kogoma, S. Kanazawa, T. Moriwaki and S. Okazaki, “The improvement of the atmospheric- pressure glow plasma method and the deposition of organic films, ”J. Phys. D 23(1990) 374.
[20] S. Kanazawa, M. Kogoma, O. Okazaki and T. Moriwaki, “Glow plasma treatment at atmospheric pressure for surface modification and film deposition, ” Nuclear Instruments and Methods in Physics Research B37/38 (1989) 842.
[21] Y. Babukutty, R. Part, K. Endo, M. Kogoma, S. Okazaki, M. Kodama, “ Poly(vinyl chloride) Surface Modification Using Tetrafluoroethylene in Atmospheric Pressure Glow Discharge , ”Langmuir 15(1999) 7055.
[22] J. R. Roth, M. Laroussi, C. Liu, “Experimental Generation Of A Steady-state Glow Discharge At Atmospheric Pressure, ” IEEE Int. Conf. on Plasma Sci. (1992) 170.
[23] K. Kelly-Wintenberg, A. Hodge, T.C. Montie, L. Deleanu, D. Sherman, J.R. Roth, P.Tsai, L. Wadsworth, “Use of a one atmosphere uniform glow discharge plasma to kill a broad spectrum of microorganisms, ” J. Vac. Sci. Technol. A 17 (1999) 1539.
[24] T.C. Montie, K. Kelly-Wintenberg, J.R. Roth, “An Overview of Research Using the One Atmosphere Uniform Glow Discharge Plasma (OAUGDP) for Sterilization of Surfaces and Materials, ”IEEE Trans. Plasma Sci. 28 (2000)41.
[25] J.R. Roth, D.M. Sherman, R.B. Gardi, F. Karakaya, Z. Chen, T.C. Montie, K.Kelly-Wintenberg, P.P.-Y. Tasi, “ A Remote Exposure Reactor (RER) for Plasma Processing and Sterilization by Plasma Active Species at One Atmosphere , ”IEEE Trans. Plasma Sci. 28 (2000) 56.
[26] K. Kelly-Wintenberg, D.M. Sherman, P.P.-Y. Tsai, R.B. Gadri, F. Karakaya, Z. Chen,J.R. Roth, T.C. Montie, “Air Filter Sterilization Using a One Atmosphere Uniform Glow Discharge Plasma (the Volfilter), ” IEEE Trans. Plasma Sci. 28 (2000) 64.
[27] Claire Tendero, et.al, “ Atmospheric pressure plasmas: A review, ”SpectrochimicaActaB61 (2006) 2.
[28] G.S. Selwyn, et.al, “Materials Processing Using an Atmospheric Pressure,RF-Generated Plasma Source, ”Contrib. Plasma Phys. 6 (2001) 610.
[29]田波明、劉德令:薄膜科學與技術手冊, P1 (1991)
[30]莊達人:VLSI製造技術, P146~P158 (1995)
[31] 唐敬堯,電漿鍍膜以 HMDSO 鍍製有機矽膜之特性研究,國立 中央大學光電科學與工程學系,碩士論文,2009。
[32] S. Martin and F. Massines , “Atmospheric pressure PE-CVD of silicon based coatings using a glow dielectric barrier discharge, ” Surface and Coatings Technology 177~178, 693(2004).
[33] S. H. Kim and J. H. Kim , “Superhydrophobic CFx Coating via In-Line Atmospheric RF Plasma of He-CF4 -H2, ” Langmuir, 21, 12213(2005).
[34] E. L. Han and Q. Chen , Machine Disign and Research., 22, 86 (2006).
[35] S. E. Babayan, J .Y .Jeong and R. F. Hicks, “ Deposition of silicon dioxide filmswith an atmospheric-pressure plasma jet, ” Plasma Source Sci.Technol., 7, 286(1998)
[36] S. E. Babayan, J .Y .Jeong and R. F. Hicks, “Deposition of silicon dioxide films with a non-equilibrium atmospheric-pressure plasma jet, ” Plasma Source Sci.Technol., 10, 573(2001)
[37] J. Benedikt and V. Raballand, “Thin film deposition by means of atmospheric pressure microplasma jet, ” Plasma Phys. Control. Fusion ,
49,419(2007)
[38] 羅萬中、林昭憲、李文浚:新型低溫常壓電漿噴流鍍膜系統建立/技術開發,金屬中心技術報告(2005)
[39] F.M. Fowkes, “ Chemistry and Physics of Interfaces, ” Amer. Chem. Soc., Washington,1-12 (1965).
[40] M. D. Barankin, E. Gonzalez II, S.B. Habib, L.Gao, P.C. Guschl, R. F. Hicks, “Hydrophobic Films by Atmospheric Plasma Curing of Spun-On Liquid Precursors, ”Langmuir25 (2009) 2495.
[41] 陳志瑋、劉志宏、林春宏、鄭總輝,功能性薄膜技術之簡介與大氣電漿鍍膜技術之應用,化工資訊與商情,2006 年,32 期,p.28。
[42] H.M. Shang, Y. Wang, S.J. Limmer, T.P. Chou, K. Takahashi, G.Z. Cao, “ Optically transparent superhydrophobic silica-based films, ” Thin Solid Films472 (2005) 37.
[43] X. Feng, L. Jiang, “ Design and Creation of Superwetting/Antiwetting Surfaces, ”Adv. Mater., 18 (2006) 3063.
[44] E.F. Hare, E.G. Shafrin, W.A. Zisman, “Properties of films of adsorbed fluorinated acids, ” J. Phys. Chem. 58 (1954) 236.
[45] S.R. Coulson, I.S. Woodward, J.P.S. Badyal, S.A. Brewer, C. Willis, “Super-Repellent Composite Fluoropolymer Surfaces, ” J. Phys. Chem.B104 (2000) 8836.
[46] S.R. Coulson, I.S. Woodward, J.P.S. Badyal, S.A. Brewer, C. Willis, “Ultralow Surface Energy Plasma Polymer Films, ”Chem. Mater.,12 (2000) 2031.
[47] M. Kiuru, E. Alakoski, “Low sliding angles in hydrophobic and oleophobic coatings prepared with plasma discharge method, ”Mater. Lett.58 (2004) 2213.
[48] S.H. Kim, J.-H. Kim, B.-K.Kang, H.S. Uhm, “Superhydrophobic CFx Coating via In-Line Atmospheric RF Plasma of He-CF4 -H2, ”Langmuir, 21 (2005) 12213.
[49] M. Nagai, O. Takai, M. Hori, “ Atmospheric Pressure Fluorocarbon-Particle Plasma Chemical Vapor Deposition for Hydrophobic Film Coating, ”Japanese Journal of Applied Physics 45 (2006) L460.
[50] R. Morent, N. De Geyter, S. Van Vlierberghe, P. Dubruel, C. Leys, E. Schacht, “Organic–inorganic behaviour of HMDSO films plasma-polymerized at atmospheric pressure, ”Surface& Coatings Technology 203 (2009) 1366.
[51] R. Morent, N. De Geyter, S. Van Vlierberghe, P. Dubruel, C. Leys, E. Schacht, “Deposition of HMDSO-based coatings on PET substrates using an atmospheric pressure dielectric barrier discharge, ”Progress in Organic Coatings 64 (2009) 304.
[52] K. Nättinen, J. Nikkola, H. Minkkinen, P. Heikkilä, J. Lavonen, M. Tuominen, “ Reel-to-reel inline atmospheric plasma deposition
of hydrophobic coatings, ” J. Coat. Technol. Res., 8(2010)237.
[53] JL 1540 附著力刮刀操作說明書
[54] PORA 鉛筆硬度計操作說明書
[55]傅立葉轉換紅外線光譜儀(FTIR)使用手冊
校內:2018-07-29公開