簡易檢索 / 詳目顯示

研究生: 游健銘
You, Chien-Ming
論文名稱: 可用於網際網路之混合式、快速的安全群組導向金鑰樹管理法
A Hybrid Fast Approach to Secure Group-oriented Management of Key Trees on Internet
指導教授: 郭耀煌
Kuo, Yau-Hwang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 95
中文關鍵詞: 金鑰樹群組金鑰混合式群組導向
外文關鍵詞: Hybrid, Group Key, Key Tree, Group-Oriented
相關次數: 點閱:92下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中,我們使用了兩個概念來建立金鑰樹。首先使用了群組導向的方式來管理金鑰樹。通常在一個大群組中會有許多小群體存在。例如一個公司會由許多部門所組成,而每個部門需要自己的群組金鑰,整個公司又需要另一個群組金鑰。許多舊的演算法是無法達到這種功能,例如TGDH。再來是混合集中式以及分散式金鑰分配,分別取出它們的優點來加以使用。因為計算出一個群體金鑰所需的指數運算次數是影響整體效能的一個大指標,所以如果混和了這兩種金鑰分配的優點的話,將會大大的降低運算次數。

    In this paper, we use two concepts to set up key tree. At first, we propose group-oriented management of key trees. There will be usually a lot of small groups in a big group. For example, a company will consist of a lot of departments, and each department needs one's own group key, whole company needs another one group key. A lot of old algorithms are unable to provide this kind of function, such as TGDH. The second, we mix the centralized and contributory key distribution managements and take out the advantage of them separately. Because the number of exponentiation computation for the group key is a great indicator of influencing whole efficiency. If we mix with these two approaches, it will greatly reduce operation cost of re-key.

    Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Organization 3 Chapter 2 Background 4 2.1 Centralized Group Key Management Protocols 4 2.2 Distributed Group Key Management Protocols 5 2.3 Diffie-Hellman Key Exchange 6 2.4 The OAKLEY Key Determination Protocol 8 2.4.1 Cookie Mechanism 9 2.4.2 Nonce Mechanism 10 2.4.3 The Key Exchange Example 10 2.5 Group Key Management 13 2.5.1 Group Key Management Requirements 14 2.5.2 Group Membership Events 15 2.6 Previous Approaches of Group Key Management 16 2.6.1 Group Key Management Protocol 17 2.6.2 Centralized Flat Table 17 2.6.3 Group Diffie–Hellman Key Exchange 18 2.6.4 Distributed Flat Table 19 2.6.5 Tree-based Group Diffie-Hellman 20 2.6.6 Group-Oriented Management of Key Trees 20 Chapter 3 A Hybrid Fast Approach to Secure Group-oriented Management of Key Trees on Internet 22 3.1 Definitions and Notations 22 3.2 Join Operation 30 3.3 Leave Operation 37 3.4 Merge Operation 42 3.5 Partition Operation 46 3.6 Regrouping Operation 49 3.7 Reconstructed Partition Operation 54 Chapter 4 Algorithm Analysis and Discussion 58 4.1 Cost Analysis of TGDH 58 4.2 Cost Analysis of HFGOT 60 4.2.1 Cost Analysis of Join Operation 61 4.2.2 Cost Analysis of Leave Operation 64 4.2.3 Cost Analysis of Merge Operation 66 4.2.4 Cost Analysis of Partition Operation 67 4.2.5 Cost Analysis of Regrouping Operation 68 4.2.6 Cost Analysis of Reconstructed partition Operation 69 4.3 Message Size Analysis 71 4.3.1 Message Size in Join Operation 71 4.3.2 Message Size in Leave Operation 73 Chapter 5 Simulation and Result 77 5.1 Join Cost 77 5.1.1 Comparison of Join Cost among TGDH, GOT and HFGOT 77 5.1.2 Join Cost of Different Subgroups 80 5.2 Leave Cost 81 5.2.1 Comparison of Leave Cost among TGDH, GOT and HFGOT 81 5.2.2 Leave Cost of Different Subgroups 84 5.3 Merge Cost 85 5.4 Partition Cost 86 5.5 Regrouping Cost 87 5.6 Reconstructed Partition Cost 88 5.7 Message Size 89 5.7.1 Join Comparison 89 5.7.2 Leave Comparison 90 Chapter 6 Conclusion and Future Work 92

    [1] Y. Kim, A. Perring, and G. Tsudik, “Simple and Fault-tolerant Key Agreement for Dynamic Collaborative Groups,” Proceedings 7th ACM Conference on Computer and Communications Security, ACM Press, November 2000, pages 235-244.
    [2] M. Burmester and Y. Desmedt, “A Secure and Efficient Conference Key Distribution System,” In A. D. Santis, editor, Advances in Cryptology-Eurocrypt’94, number 950 in Lecture Notes in Computer Science, pages 275-286.
    [3] H. Orman, “The OAKLEY Key Determination Protocol”, RFC 2412, November 1998.
    [4] AMIR, Y., KIM, Y., NITA-ROTARU, C., SCHULTZ, J., STANTON, J., AND TSUDIK, G. 2004. “Secure group communication using robust contributory key agreement”. IEEE Trans. Parallel and Distrib. Syst. 15, 5, 468–480.
    [5] CHOCKLER, G. V., KEIDAR, I., AND VITENBERG, R. “Group communication specifications: A comprehensive study”. ACM Computing Surveys, 4 (December 2001), 427–469.
    [6] HARNEY, H. AND MUCKENHIRN, C. 1997a. “Group Key Management Protocol (GKMP) Specification”. RFC 2093.
    [7] HARNEY, H. AND MUCKENHIRN, C. 1997b. “Group Key Management Protocol (GKMP) Architecture”. RFC 2094.
    [8] WALDVOGEL, M., CARONNI, G., SUN, D., WEILER, N., AND PLATTNER, B. 1999. “The VersaKey framework: Versatile group key management”. IEEE J. Sel. Areas Commun. (Special Issue on Middleware) 17, 9 (Aug.), 1614–1631.
    [9] M. Steiner, G. Tsudik, and M. Waidner, “Diffie-Hellman Key Distribution Extended to Group Communication,” Proceedings 3rd ACM Conference on Computer and Communications Security, 1996, pages 31-37.
    [10] Chien-Fu Chen, “Group-oriented Management of Key Trees for Secure Internet”, master thesis of Department of Computer Science and Information Engineering Nation Cheng Kung University

    下載圖示 校內:立即公開
    校外:2006-08-25公開
    QR CODE