簡易檢索 / 詳目顯示

研究生: 張智詠
Chang, Chih-Yung
論文名稱: 陽極氧化製備氮化鉭薄膜用於光電化學分解水製氫
Anodization Preparation of Ta3N5 Thin Films as Photoelectrodes for Water Splitting
指導教授: 鄧熙聖
Teng, Hsi-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 105
中文關鍵詞: 陽極氧化法氮化鉭光電極分解水產氫
外文關鍵詞: Anodization, Ta3N5, Photoelectrode, Water splitting, Hydrogen generation
相關次數: 點閱:72下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是利用製成簡單的陽極氧化法製備n型半導體氮化鉭薄膜,能隙大小約為2.0 eV,適合作為吸收可見光的半導體材料以及光分解水的陽極電極。經由X光繞射儀以及掃描式電子顯微鏡的分析,氮化鉭為斜方晶相的結構,大小約為20~50 nm 的奈米顆粒,顆粒之間有相互交連而形成孔洞的結構。藉由浸泡氮化鉭薄膜於硝酸鈷溶液中,經過高溫氮化反應後,可在薄膜上形成p型的氮化鈷。並利用Mott-Schottky分析、UV-Visble及循環伏安法鑑定了氮化鉭和氮化鈷的半導體特性,包括有導帶、價帶以及費米能階的位置。
    由研究結果顯示,氮化鈷負載於氮化鉭薄膜上所形成的p-n界面可以提升氮化鉭薄膜的光電化學性質。在AM1.5的太陽模擬光照射下,0.5M的氫氧化鉀水溶液中,可於偏壓0.5V vs. Ag/AgCl下有2.5 mA/cm2的光電流應答,比相同條件下單純氮化鉭薄膜的光電流30μA/cm2來的更為優異。經交流阻抗和IMPS(Intensity Modulated Photocurrent Spectroscopy)的分析也發現,利用此p-n界面,可以改善電荷分離的效果,減少再結合反應的發生,讓電子可以快速的通過薄膜傳到電極,使得在光電化學反應的效率能夠大幅提升。
    另外,本研究將二極式光電極系統結合氣相層析儀,於300W氙燈的可見光(λ>420nm)照射下,施加固定電位所得到光電流對時間應答的曲線,利用法拉第定律求得理論的產生氣體量;而真實的氣體產生量,則藉由氣相層析儀的量測而得到,透過此系統,也能證實所得之光電流為照光後分解水時所產生之電流應答。

    In the present work, a n-type semiconductor tantalum nitride(Ta3N5) film is fabricated by anodization. Ta3N5 with a band gap of 2.0 eV, which can absorb visible light and is suitable to be a good photoanode. From XRD and SEM analysis, which can know that Ta3N5 belong to orthorhombic phase, has the porous structure and the particle size of about 20~50 nm. In addition, immersing the Ta3N5 film in Co(NO3)2 solution then take it to nitride, can form a p-type cobalt nitride(Co5.47N) on it. By using Mott-Schottky, UV-Vis absorption and CV to check their conduction band, valance band and fermi level.
    With the p-n interface on Co5.47N-Ta3N5 film, it can greatly enhance the performance for photoelectrochemical water oxidation. Under AM 1.5 G simulated sunlight illumination, the photocurrent density of Co5.47N-Ta3N5 can reach 2.5mA/cm2, which is more larger than 30μA /cm2 of bare Ta3N5 film at 0.5V vs. Ag/AgCl in 0.5M KOH solution . From EIS and IMPS analysis, it is established that the intimate contact between Co5.47N and Ta3N5 can improve the electron-hole separation, decrease the recombination and reduce the resistance to the transport of electrons.
    By combining the photoelectrode system with GC, it can calculate the theoretical electron moles from current-time curve and detect the real gas evolution from GC at the same time, under 300W Xe lamp visible light illumination, at fixed potential. Through this system, which can prove that the water splitting gas evolution is form the photocurrent response.

    總目錄 中文摘要…………………………………………………………………I Abstract…………………………………………………………………II 誌謝………………………………………………………………………III 本文目錄…………………………………………………………………VII 表目錄……………………………………………………………………X 圖目錄……………………………………………………………………XI 本文目錄 第一章 序論.................................................1 1-1 前言...................................................1 1-2 Fujishima-Honda effect................................2 1-3 光觸媒原理..............................................3 1-3-1 光觸媒的催化原理......................................3 1-3-2 光分解水的原理........................................4 1-3-3 光觸媒分解水反應程序..................................8 1-4 光觸媒分解水裝置........................................9 1-5 研究動機...............................................10 第二章 文獻回顧............................................11 2-1 金屬氧化物半導體光觸媒的發展...........................11 2-2 光觸媒薄膜分解水.......................................17 2-2-1 粉體式光觸媒 v.s. 薄膜式光觸媒.......................17 2-2-2 光觸媒薄膜電極種類...................................17 2-2-3 光觸媒薄膜電極作用原理...............................19 2-2-4 如何增進光電化學轉換效率.............................22 2-3 半導體電化學理論簡介...................................24 2-3-1 本質半導體與外質半導體...............................24 2-3-2 費米能階.............................................25 2-3-3 n型和p型半導體/電解質界面............................27 2-3-4 交流阻抗界面分析.....................................30 2-3-5 半導體電極界面鑑定...................................36 2-4 氮化鉭的結構與其半導體性質.............................38 2-5 陽極氧化法.............................................41 第三章 實驗方法與儀器原理介紹..............................43 3-1 藥品、材料與儀器設備...................................43 3-1-1 藥品與材料...........................................43 3-1-2 儀器與實驗設備.......................................44 3-2 實驗..................................................45 3-2-1 氮化鉭光電極之製備...................................45 3-2-2 氮化鈷-氮化鉭光電極之製備............................45 3-2-3 氮化鈷之製備.........................................46 3-2-4 CoOx之負載...........................................46 3-3 實驗設備與方法.........................................48 3-3-1 陽極氧化裝置.........................................48 3-3-2 光電化學裝置.........................................49 3-3-3 懸浮式光照反應器.....................................50 3-3-4 懸浮式/電極式二用之光電化學裝置......................52 3-4 分析儀器原理簡介.......................................53 3-4-1 X光繞射分析..........................................53 3-4-2 紫外-可見光分光光度計................................56 3-4-3 穿透式電子顯微鏡.....................................58 3-4-4 掃描式電子顯微鏡.....................................61 3-4-5 氣相層析儀...........................................63 第四章 結果與討論..........................................65 4-1 XRD圖譜及結構分析......................................65 4-2 吸收光譜圖譜分析.......................................68 4-3 觸媒能階位置分析.......................................70 4-3-1 Mott-Schottky分析...................................70 4-3-2 循環伏安法求能階位置.................................73 4-4 掃描式電子顯微鏡表面分析...............................77 4-5 穿透式電子顯微鏡分析...................................78 4-6 氮化鉭薄膜光電極之光電化學分析.........................80 4-6-1 電極式之光電化學分析.................................80 4-6-2 懸浮式/電極式二用之光電化學分析......................85 4-7 EIS與IMPS分析..........................................88 4-7-1 EIS分析.............................................88 4-7-2 IMPS分析............................................90 4-8 光觸媒反應活性測試.....................................93 第五章 結論................................................94 5-1 結論..................................................94 5-2 未來建議...............................................95 參考文獻...................................................96 自述.....................................................105 表目錄 第二章 文獻回顧 表2-1 Z-Scheme複合式光觸媒在可見光下分解水之文獻回顧.......16 表2-2 氮化鉭光觸媒於不同犧牲試劑下的產氫與產氧活性.........40 第四章 結果與討論 表4-1 各觸媒之能隙值.......................................69 表4-2 不同觸媒經由Mott Schottky 圖所得之費米能階,以及由循環伏安法推得的導帶和價帶位置.................................75 表4-3 利用EIS和IMPS所得到的電子傳遞特性之比較..............91 圖目錄 第一章 緒論 圖1-1 Fujishima-Honda Effect實驗裝置圖......................2 圖1-2 Fujishima-Honda Effect實驗反應示意圖..................3 圖1-3 光觸媒反應類型........................................6 圖1-4 常見的半導體光觸媒的能帶結構圖........................6 圖1-5 半導體光觸媒分解水的原理..............................7 圖1-6 光觸媒效率受塊材性質的影響............................7 圖1-7 光分解水的兩步(two-step)反應機制示意圖................7 圖1-8 光觸媒反應程序........................................8 圖1-9 常見的光分解水反應器 (a)內照式反應器 (b)側照式反應器 (c)上照式反應器.............................................9 第二章 文獻回顧 圖2-1 太陽光波長與能量分佈圖...............................14 圖2-2 三種不同形式增加光吸收之半導體能隙示意圖 (a)過渡金屬摻入型光觸媒 (b)價帶控制型光觸媒 (c)固相溶液型光觸媒.........14 圖2-3 光催化水分解之一步驟(One-step)與二步驟(Two-step)光觸媒系統.......................................................15 圖2-4 內部含水之層狀鈣鈦礦(Layered perovskite)結構分解水機制圖..15 圖2-5 光電化學分解水類型.....................................19 圖2-6 由半導體陽極和金屬陰極所組成的光電解水電池:(a)未放入溶液前之半導體陽極和金屬陰極之費米能階位置;(b)放入溶液後將電極接通後,系統達能量平衡(未照光);(c)照光後光電池反應發生 (其中Δψsc 為空間電荷空乏層的電位降)...........................21 圖2-7 WO3/BiVO4複材形成 junction 以增進電子電洞傳遞示意圖..23 圖2-8 電化學電位刻度和半導體能量軸之對照圖:最右邊軸參考點為電子在真空中能量為零的費米能階;中間的軸為電化學電位軸,是以標準氫電極來定義的。EF、EC和EV為半導體的費米能階、導帶和價帶的位置.....................................................27 圖2-9 半導體/電解質界面之電位降及能帶彎曲圖................28 圖2-10 能帶彎曲和施加電位的關係。其中Vfb為半導體平帶電位...29 圖2-11 n型和p型半導體施加正偏壓及負偏壓後,其能帶彎曲圖形..29 圖2-12 阻抗之複數平面中代表電阻和電容兩部分................32 圖2-13 電阻和電容串聯 (a)電路圖 (b)複數平面阻抗圖..........34 圖2-14 電阻和電容並聯(a)電路圖(b)並聯RC電路中,電容和電阻電流向量之總和(c)複數平面之阻抗圖..............................36 圖2-15 n型和p型半導體之Mott-Schottky圖,可由圖中的斜率判斷其為n型或p型的半導體以及載子濃度,由截距可得材料平帶電位.....37 圖2-16 板鈦礦八面體概圖....................................38 圖2-17 板鈦礦八面體晶相結構................................38 圖2-18 擬板鈦礦八面體概圖..................................39 圖2-19 氮化鉭的單位晶格結構................................39 圖2-20 氧化鉭與氮化鉭之能帶結構示意圖......................40 圖2-21 陽極氧化法製備Ta2O5示意圖...........................42 第三章 實驗方法與儀器原理介紹 圖3-1 氮化鉭(Ta3N5)光電極製備流程圖........................46 圖3-2 氮化鈷-氮化鉭(Co-Ta3N5)光電極製備流程圖..............47 圖3-3 陽極氧化裝置示意圖...................................48 圖3-4 光電化學裝置:(a)工作電極:Ta3N5、Co-Ta3N5薄膜;(b)參考電極:Ag/AgCl;(c)相對電極:Pt.............................49 圖3-5 側照式懸浮法反應器...................................50 圖3-6 側照式光分解水系統裝置圖.............................51 圖3-7 懸浮式/電極式二用之光電化學裝置圖....................52 圖3-8 X光對原子散射圖......................................55 圖3-9 X光對晶體繞射圖......................................55 圖3-10 X光繞射分析儀設備圖.................................55 圖3-11 紫外-可見光分光光度計設備圖.........................57 圖3-12 基本穿透式電子顯微鏡之結構圖........................59 圖3-13 穿透式電子顯微鏡設備圖..............................60 圖3-14 電子彈性與非彈性碰撞的結果示意圖....................62 圖3-15 掃描式電子顯微鏡設備圖..............................62 圖3-16 氣相層析儀外觀裝置圖................................64 第四章 結果與討論 圖4-1 X光繞射圖 氮化鈷(Co5.47N)及其標準JCPDS圖譜...........66 圖4-2 X光繞射圖 (a)氮化鉭(Ta3N5);(b)氮化鈷-氮化鉭(Co-Ta3N5)及標準JCPDS圖譜............................................67 圖4-3 氮化鉭(Ta3N5)、氮化鈷-氮化鉭(Co-Ta3N5)以及氮化鈷(Co5.47N)之紫外/可見光吸收光譜.............................69 圖4-4 分析交流阻抗圖譜假設之等效電路圖。Rs為溶液的電阻,和一個Rc迴路串聯,RC迴路包含了觸媒薄膜之空間電荷層中並聯的電容值C和電阻值Rb.................................................71 圖4-5 根據Mott-Schottky關係式,將擬合過後之電容值與施加電位作圖: (a) Ta3N5;(b) Co5.47N;(c) Co-Ta3N5...................72 圖4-6 循環伏安法決定半導體能階,掃描速率: 10 mV/s。(a)Ta3N5;(b) Co5.47N................................................74 圖4-7 Ta3N5、Co5.47N之能階位置圖,其中包含水的還原電位及氧化電位 (於pH=13.6之KOH水溶液中測試)..........................76 圖4-8 掃描式電子顯微鏡表面分析 (a) Ta3N5;(b) Co-Ta3N5.....77 圖4-9 (a) Co-Ta3N5之低倍率TEM圖;(b) Co-Ta3N5之HR-TEM圖....79 圖4-10(a) Ta3N5與Co-Ta3N5於照光下不同偏壓之光電流應答;(b)Ta3N5與Co-Ta3N5於0.5 V vs. Ag/AgCl的光電流應答對時間圖;(c)Ta3N5與CoOx-Ta3N5於照光下不同偏壓之光電流應答...........83 圖4-11 Ta3N5與Co5.47N所形成之 p-n junction 介面示意圖......84 圖4-12 不同硝酸鈷濃度所合成出的Co-Ta3N5於偏壓0.5 V vs.Ag/AgCl的光電流值比較.............................................84 圖4-13 二極式電極系統所得之理論與實際氣體產量之比較(a)Ta3N5;(b)Co-Ta3N5................................................87 圖4-14 (a)Ta3N5與Co-Ta3N5電極以AM 1.5G模擬太陽光(100 mW/cm2)照射下,偏壓0.5 V vs. Ag/AgCl進行交流阻抗測試之結果。Inset為模擬等效電路圖,實線部分為配合模擬等效電路擬合後的結果;(b)為圖(a)中之高頻區域局部放大圖................................89 圖4-15 Ta3N5與Co-Ta3N5電極之IMPS分析圖。(以波長455 nm的藍光LED,強度為150 W/m2,搭配光強度5 %之震盪,並控制電位在0.5 V vs. Ag/AgCl下).............................................91 圖4-16 Ta3N5與Co5.47N形成 p-n junction 以增進電子傳遞示意圖(a)Ta3N5;(b)Co-Ta3N5......................................92 圖4-17 6.25mg的Co-Ta3N5觸媒於220mL純水中進行光分解水測試...93

    1.張立群譯,“光清淨革命-活躍的二氧化鈦光觸媒”,協志工業叢書印行,2000.
    2.藤嶋昭、本多健一、 菊池真一,“工業化學”, 1969, 72, 108.
    3.A. Fujishima, K. Honda, Nature, “Electrochemical Photolysis of Water at a Semiconductor Electrode”, 1972, 238, 37.
    4.A. Kudo, H. Kato, I. Tsuji, Chem. Lett., “ Strategies for the Development of Visible-light-driven Photocatalysts for Water Splitting”, 2004, 33, 1534.
    5.A. Kudo, “Photocatalyst materials for water splitting”, Catal. Surv. Asia, 2003, 31, 7.
    6.A. Mills, S. L. Hnute, “An overview of semiconductor photocatalysis”, J. Photochem. Photobiol. A:Chem., 1997, 108, 1.
    7.M. Grätzel, “Photoelectrochemical cells”, Nature, 2001, 414, 338.
    8.A. Kudo, Y. Miseki, “ Heterogeneous photocatalyst materials for water splitting”, Chem. Soc. Rev. 2009, 38, 253.
    9.F. E. Osterloh, “Inorganic Materials as Catalysts for Photochemical Splitting of Water”, Chem. Mater., 2008, 20, 35.
    10.K. Sayama, K. Mukasa, R. Abe, Y. Abe, H. Arakawa, “Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an IO3−/I− shuttle redox mediator under visible light irradiation”, Chem. Commun. 2001, 2416.
    11.H. Kato, M. Hori, R. Konta, Y. Shimodaira, A. Kudo, “Construction of Z-scheme Type Heterogeneous Photocatalysis Systems for Water Splitting into H2 and O2 under Visible Light Irradiation”, Chem. Lett. 2004, 33, 1348.
    12.R. Abe, K. Sayama, H. Sugihara, “Development of new photocatalytic water splitting into H2 and O2 using two different semiconductor photocatalysts and a shuttle redox mediator IO3−/I-”, J. Phys. Chem. B 2005, 109, 16052.
    13.A. Kudo, “Development of photocatalyst materials for water splitting”, Inter. J. Hydrogen Energy., 2006, 31, 197.
    14.M. Matsuoka, M. Kitano, M. Takeuchi, K. Tsujimaru, M. Anpo, J. Thomas, “Photocatalysis for new energy production: Recent advances in photocatalytic water splitting reactions for hydrogen production”, Catal. Today, 2007, 122, 51.
    15.Y. Matsumoto, U. Unal, N. Tanaka, A. Kudo, H. Kato,“Electrochemical approach to evaluate the mechanism of photocatalytic water splitting on oxide photocatalysts ”, J. Solid State Chem., 2004, 177, 4205.
    16.N. Nian, C. C. Hu, H. Teng, “Electrodeposited p-type Cu2O for H2 evolution from photoelectrolysis of water under visible light illumination”, Inter. J. Hydrogen Ener., 2008, 33, 2897.
    17.Y. Matsumoto, A. Funatsu, D. Matsuo, U. Unal, K. Ozawa, “Electrochemistry of Titanate(IV) Layered Oxides”, J. Phys. Chem. B, 2001, 105, 10893.
    18.H. Kato, A. kudo, “Water Splitting into H2 and O2 on Alkali Tantalate Photocatalysts ATaO3 (A = Li, Na, and K)”, J. Phys. Chem. B, 2001, 105, 4285.
    19.T. Ishihara, H. Nishiguchi, K. Fukamachi, Y. Takita, “Effects of Acceptor Doping to KTaO3 on Photocatalytic Decomposition of Pure H2O”, J. Phys. Chem. B, 1999, 103, 1.
    20.K. Rajeshwar, “Hydrogen generation at irradiated oxide semiconductor–solution interfaces”, J. Appl. Electrochem., 2007,37,765.
    21.H. Kato, A. Kudo, “Photocatalytic water splitting into H2 and O2 over various tantalate photocatalysts”, Catal. Today, 2003, 78, 561.
    22.A. Kudo, R.Niishiro, A. Iwase, H. Kato, “Effects of doping of metal cations on morphology, activity, and visible light response of photocatalysts”, Chem. Phys., 2007, 339, 104.
    23.R. Abe, K. Sayama, K. Domen, H. Arakawa, “Efficient hydrogen evolution from aqueous mixture of I− and acetonitrile using a merocyanine dye-sensitized Pt/TiO2 photocatalyst under visible light irradiation”, Chem. Phys. Lett., 2002, 362, 441.
    24.M. Higashi, R. Abe, K. Teramura, T.Takato, B. Ohtani, K. Domen, “Two step water splitting into H2 and O2 under visible light by ATaO2N (A = Ca, Sr, Ba) and WO3 with IO3−/I- shuttle redox mediator”, Chem. Phys. Lett., 2008, 452, 120.
    25.K. Maeda, K. Teramura, N. Saito, Y. Inoue, K. Domen, “Photocatalytic Overall Water Splitting on Gallium Nitride Powder”, Bull. Chem. Soc. Jpn. 2007, 80, 1004.
    26.K. Maeda, K. Teramura, T. Takata, M. Hara, N. Saito, K. Toda, Y.Inoue, H. Kobayashi, K. Domen, “Overall Water Splitting on (Ga1-xZnx)(N1-xOx) Solid Solution Photocatalyst:  Relationship between Physical Properties and Photocatalytic Activity”, J. Phys. Chem. B, 2005, 109, 20504.
    27.K. Maeda, H. Terashima, K. Kase, K. Domen, “Nanoparticulate precursor route to fine particles of TaON and ZrO2–TaON solid solution and their photocatalytic activity for hydrogen evolution under visible light”, Appl. Catal. A:Gener., 2009, 357, 206.
    28.M. Hara, G. Hitoki, T. Takata, J. N. Kondo, H. Kobayashi, K.Domen, “TaON and Ta3N5 as new visible light driven photocatalysts”, Catal. Today, 2003, 78, 555.
    29.X. Zong, H. Yan, G. Wu, G. Ma, F. Wen, L. Wang, C. Li, “Enhancement of Photocatalytic H2 Evolution on CdS by Loading MoS2 as Cocatalyst under Visible Light Irradiation”, J. Am. Chem. Soc., 2008, 130, 7176.
    30.X. Wang, K. Maeda, Y. Lee, K. Domen, “Enhancement of photocatalytic activity of (Zn1+xGe)(N2Ox) for visible-light-driven overall water splitting by calcination under nitrogen”, Chem. Phys. Lett., 2008, 457, 134.
    31.A. Kudo, I. Mikami, “Photocatalytic activities and photophysical properties of Ga2−xInxO3 solid solution”, J. Chem. Soc., 1998, 94, 2929.
    32.I. Tsuji, H. Kato, A. Kudo, “Visible-Light-Induced H2 Evolution from an Aqueous Solution Containing Sulfide and Sulfite over a ZnS–CuInS2–AgInS2 Solid-Solution Photocatalyst”, Angew. Chem. Int. Ed., 2005, 44, 3565.
    33.C. C. Lo, C. W. Huang, C. H. Liao and J. C. S. Wu, “Novel twin reactor for separate evolution of hydrogen and oxygen in photocatalytic water splitting”, International Journal of Hydrogen Energy, 2010, 35, 1523.
    34.S. C. Yu, C. W. Huang, C. H. Liao, J. C. S. Wu, S. T. Chang and K. H. Chen, “A novel membrane reactor for separating hydrogen and oxygen in photocatalytic water splitting”, Journal of Membrane Science, 2011, 382, 291.
    35.T. Takata, K. Shinohara, A. Tanaka, M. Hara, J. N. Kondo, K. Domen, “A highly active photocatalyst for overall water splitting with a hydrated layered perovskite structure”, J. Photochem. Photobio. A: Chem. 1997, 106, 45.
    36.K. Sayama, K. Mukasa, R. Abe, Y. Abe and H. Arakawa, “A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis”, J. Photochem. Photobiol., A, 2002, 148, 71.
    37.R. Abe, T. Takata, H. Sugihara and K. Domen, “Photocatalytic overall water splitting under visible light by TaON and WO3 with an IO3−/I− shuttle redox mediator”, Chem. Commun., 2005, 3829.
    38.M. Higashi, R. Abe, A. Ishikawa, T. Takata, B. Ohtani and K. Domen, “Z-scheme Overall Water Splitting on Modified-TaON Photocatalysts under Visible Light (λ < 500 nm)”, Chem. Lett., 2008, 37, 138.
    39.L. J. Minggu, W. R. W. Daud and M. B. Kassim, “An overview of photocells and photoreactors for photoelectrochemical water splitting”, International Journal of Hydrogen Energy, 2010, 35, 5233.
    40.C. C. Hu, J. N. Nian and H. Teng, “Electrodeposited p-type Cu2O as photocatalyst for H2 evolution from water reduction in the presence of WO3”, Solar Energy Materials and Solar Cells, 2008, 92, 1071.
    41.S. Ida, K. Yamada, T. Matsunaga, H. Hagiwara, Y. Matsumoto and T. Ishihara, “Preparation of p-Type CaFe2O4 Photocathodes for Producing Hydrogen from Water”, Journal of American Chemical Society, 2010, 132, 17343.
    42.R. Abe, “Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation”, Journal of Photochemistry and Photobiology C-Photochemistry Reviews, 2010, 11, 179.
    43.W. B. Ingler and S. U. M. Khan, “A Self-Driven p /n‐Fe2O3 Tandem Photoelectrochemical Cell for Water Splitting”, Electrochemical and Solid State Letters, 2006, 9, G144.
    44.S. G. Yang, X. Quan, X. Y. Li, Y. Z. Liu, S. Chen and G. H. Chen, “Preparation, characterization and photoelectrocatalytic properties of nanocrystalline Fe2O3/TiO2, ZnO/TiO2, and Fe2O3/ZnO/TiO2 composite film electrodes towards pentachlorophenol degradation”, Physical Chemistry Chemical Physics, 2004, 6, 659.
    45.N. Sato, Electrochemistry at Metal and Semiconductor Electrodes;Elsevier, New York, 1998.
    46.Yanqing Cong, Hyun S. Park, Shijun Wang, Hoang X. Dang, Fu-Ren F. Fan, C. Buddie Mullins, “Synthesis of Ta3N5 Nanotube Arrays Modified with Electrocatalysts for Photoelectrochemical Water Oxidation”, J. Phys. Chem. C, 2012, 116, 14541.
    47.K. P. Wang, H. S. Teng, “Structure-intact TiO2 nanoparticles for efficient electron transport in dye-sensitized solar cells”, Appl. Phys. Lett., 2007, 91, 173102.
    48.K. Shankar, G. K Mor, H. E Prakasam, S. Yoriya, M. Paulose, O. K Varghese, C. A Grimes, “Highly-ordered TiO2 nanotube arrays up to 220 µm in length: use in water photoelectrolysis and dye-sensitized solar cells”, Nanotechnology. 2007, 18, 065707.
    49.P. Chatchai, Y. Murakami, S.-Y. Kishiokal, A. Y. Nosaka, Y. Nosaka, “Efficient photocatalytic activity of water oxidation over WO3/BiVO4 composite under visible light irradiation”, Electrochimica Acta., 2009, 54, 1147.
    50.Finklea, H.O. Semiconductor Electrode;Elsevier, New York, 1988.
    51.Memming, R. Semiconductor Electrochemistry;Wiley-VCH, New York, 2001.
    52.李佩珊,“孔洞性三氧化鎢薄膜光分解水電極之製備與研究”,國立成功大學化學工程研究所碩士論文, 2007.
    53.Macdonald, J.R. Impedance Spectroscopy:Emphasizing Solid Materials and Systems;Wiley, New York, 1987.
    54.Brett, C.M.A.;Brett, A.M.O.Electrochemistry:Principles, Methods, and Applications;Oxford, New York, 1993.
    55.Adlkofer, K.;Tanaka, M. “Stable Surface Coating of Gallium Arsenide with Octadecylthiol Monolayers”, Langmuir, 2001, 17, 4267.
    56.N.E. Brese, F.J. Disalvo, M. O’Keeffe, P. Rauch. “Structure of Ta3N5 at 16 K by time-of-flight neutron diffraction”, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1991, 47, 2291.
    57.高濂、鄭珊、張青紅,“奈米光觸媒”,五南出版社, 2004.
    58.O. Carp, C.L. Huisman, A. Reller, “Photoinduced reactivity of titanium dioxide”, Solid State Chemistry, 2004, 32, 33.
    59.Peter Kroll, Timon Schroter, and Martina Peters, “Prediction of Novel Phases of Tantalum(V) Nitride and Tungsten(VI) Nitride That Can Be Synthesized under High Pressure and High Temperature”, Angew. Chem. Int. Ed., 2005, 44, 4249.
    60.Stuart J. Henderson, Andrew L. Hector, “Structural and compositional variations in Ta3N5 produced by high-temperature ammonolysis of tantalum oxide”, Solid State Chemistry, 2006, 179, 3518.
    61.Chiun-Teh Ho, Ke-Bin Low, Robert F. Klie, Kazuhiko Maeda, Kazunari Domen, Randall J. Meyer and Preston T. Snee, “Synthesis and Characterization of Semiconductor Tantalum Nitride Nanoparticles”, J. Phys. Chem. C, 2011, 115, 647.
    62.Hitoki, G., Ishikawa A., Takata, T., Kondo, J. N., Hara, M., Domen, K., “Ta3N5 as a Novel Visible Light-Driven Photocatalyst (λ<600 nm)”, Chem. Lett. 2002, 31, 736.
    63.V. Zwilling, M. Aucouturier, E. Darque-Ceretti, “Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach”, Electrochimica Acta, 1999, 45, 921.
    64.D. Gong, C.A. Grimes, O.K. Varghese, W. Hu, R.S. Singh, Z. Chen, E.C. Dickey, “Titanium oxide nanotube arrays prepare by anodic oxidation”, Material Research Society, 2001,16, 3331.
    65.I. Sieber, H. Hildebrand, A. Friedrich, and P. Schmuki, “Formation of self-organized niobium porous oxide on niobium”, Electrochem. Commun., 2005, 7, 97.
    66.H. Tsuchiya, J. M. Macak, I. Sieber, L. Taveira, A. Ghicov, K. Sirotna, and P. Schmuki, “Self-organized porous WO3 formed in NaF electrolytes”, Electrochem. Commun., 2005, 7, 295.
    67.H. Masuda and K. Fukuda, “Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina”, Science, 1995, 268, 1466.
    68.Irina V. Sieber and Patrik Schmuki, “Porous Tantalum Oxide Prepared by Electrochemical Anodic Oxidation”, Journal of The Electrochemical Society, 2005, 152 (9), C639.
    69.Hany A. El-Sayed and Viola I. Birss, “Controlled interconversion of nanoarray of ta dimples and high aspect ratio ta oxide nanotubes”, Nano Lett., 2009, 9, 1350.
    70.B. D. Cullity, S. R. Stock, “Elements of X-ray Diffraction 3rd ed ”, Prentice Hall, 2001.
    71.M. Yan, F. Chem. J. Zhang, M. Anpo, “Preparation of controllable crystalline titania and study on the photocatalytic properties”, J. Phys. Chem. B, 2005, 109, 8673.
    72.D. G. Barton, M. Shtein, R. D. Wilson, S. L. Solied, E. Iglesia, “Structure and Electronic Properties of Solid Acids Based on Tungsten Oxide Nanostructures”, J. Phys. Chem. B, 1999, 103, 630.
    73.蔡承達,“鎵化合物光觸媒在分解水產氧之應用”,國立成功大學化學工程研究所碩士論文,2012.
    74.陳俊吉,“金屬氧化物半導體在可見光分解水製氫之研究”,國立成功大學化學工程學系碩士論文 ,2005.
    75.Nian, J.-N. and Teng, H., “Hydrothermal Synthesis of Single-Crystalline Anatase TiO2 Nanorods with Nanotubes as the Precursor.”, J. Phys. Chem. B, 2006, 110, 4193.
    76.Masanobu Higashi, Kazunari Domen and Ryu Abe, “Highly stable water splitting on oxynitride TaON photoanode system under visible light irradiation”, J. Am. Chem. Soc., 2012, 134, 6968.
    77.H. Wang, T. Lindgren, J. He, A. Hagfeldt, S.-E. Lindquist, “Photolelectrochemistry of Nanostructured WO3 Thin Film Electrodes for Water Oxidation:  Mechanism of Electron Transport”, J. Phys. Chem. B, 2000, 104, 5686.
    78.Masanobu Higashi, Kazunari Domen and Ryu Abe, “Fabrication of efficient TaON and Ta3N5 photoanodes for water splitting under visible light irradiation”, Energy Environ. Sci., 2011, 4, 4138.
    79.鄒宜錚,“醇類蒸氣處理對三氧化鎢博膜光電化學反應影響之研究”,國立成功大學化學工程學系碩士論文 ,2009.

    下載圖示 校內:2018-09-04公開
    校外:2018-09-04公開
    QR CODE