| 研究生: |
張智詠 Chang, Chih-Yung |
|---|---|
| 論文名稱: |
陽極氧化製備氮化鉭薄膜用於光電化學分解水製氫 Anodization Preparation of Ta3N5 Thin Films as Photoelectrodes for Water Splitting |
| 指導教授: |
鄧熙聖
Teng, Hsi-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 陽極氧化法 、氮化鉭 、光電極 、分解水 、產氫 |
| 外文關鍵詞: | Anodization, Ta3N5, Photoelectrode, Water splitting, Hydrogen generation |
| 相關次數: | 點閱:72 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究是利用製成簡單的陽極氧化法製備n型半導體氮化鉭薄膜,能隙大小約為2.0 eV,適合作為吸收可見光的半導體材料以及光分解水的陽極電極。經由X光繞射儀以及掃描式電子顯微鏡的分析,氮化鉭為斜方晶相的結構,大小約為20~50 nm 的奈米顆粒,顆粒之間有相互交連而形成孔洞的結構。藉由浸泡氮化鉭薄膜於硝酸鈷溶液中,經過高溫氮化反應後,可在薄膜上形成p型的氮化鈷。並利用Mott-Schottky分析、UV-Visble及循環伏安法鑑定了氮化鉭和氮化鈷的半導體特性,包括有導帶、價帶以及費米能階的位置。
由研究結果顯示,氮化鈷負載於氮化鉭薄膜上所形成的p-n界面可以提升氮化鉭薄膜的光電化學性質。在AM1.5的太陽模擬光照射下,0.5M的氫氧化鉀水溶液中,可於偏壓0.5V vs. Ag/AgCl下有2.5 mA/cm2的光電流應答,比相同條件下單純氮化鉭薄膜的光電流30μA/cm2來的更為優異。經交流阻抗和IMPS(Intensity Modulated Photocurrent Spectroscopy)的分析也發現,利用此p-n界面,可以改善電荷分離的效果,減少再結合反應的發生,讓電子可以快速的通過薄膜傳到電極,使得在光電化學反應的效率能夠大幅提升。
另外,本研究將二極式光電極系統結合氣相層析儀,於300W氙燈的可見光(λ>420nm)照射下,施加固定電位所得到光電流對時間應答的曲線,利用法拉第定律求得理論的產生氣體量;而真實的氣體產生量,則藉由氣相層析儀的量測而得到,透過此系統,也能證實所得之光電流為照光後分解水時所產生之電流應答。
In the present work, a n-type semiconductor tantalum nitride(Ta3N5) film is fabricated by anodization. Ta3N5 with a band gap of 2.0 eV, which can absorb visible light and is suitable to be a good photoanode. From XRD and SEM analysis, which can know that Ta3N5 belong to orthorhombic phase, has the porous structure and the particle size of about 20~50 nm. In addition, immersing the Ta3N5 film in Co(NO3)2 solution then take it to nitride, can form a p-type cobalt nitride(Co5.47N) on it. By using Mott-Schottky, UV-Vis absorption and CV to check their conduction band, valance band and fermi level.
With the p-n interface on Co5.47N-Ta3N5 film, it can greatly enhance the performance for photoelectrochemical water oxidation. Under AM 1.5 G simulated sunlight illumination, the photocurrent density of Co5.47N-Ta3N5 can reach 2.5mA/cm2, which is more larger than 30μA /cm2 of bare Ta3N5 film at 0.5V vs. Ag/AgCl in 0.5M KOH solution . From EIS and IMPS analysis, it is established that the intimate contact between Co5.47N and Ta3N5 can improve the electron-hole separation, decrease the recombination and reduce the resistance to the transport of electrons.
By combining the photoelectrode system with GC, it can calculate the theoretical electron moles from current-time curve and detect the real gas evolution from GC at the same time, under 300W Xe lamp visible light illumination, at fixed potential. Through this system, which can prove that the water splitting gas evolution is form the photocurrent response.
1.張立群譯,“光清淨革命-活躍的二氧化鈦光觸媒”,協志工業叢書印行,2000.
2.藤嶋昭、本多健一、 菊池真一,“工業化學”, 1969, 72, 108.
3.A. Fujishima, K. Honda, Nature, “Electrochemical Photolysis of Water at a Semiconductor Electrode”, 1972, 238, 37.
4.A. Kudo, H. Kato, I. Tsuji, Chem. Lett., “ Strategies for the Development of Visible-light-driven Photocatalysts for Water Splitting”, 2004, 33, 1534.
5.A. Kudo, “Photocatalyst materials for water splitting”, Catal. Surv. Asia, 2003, 31, 7.
6.A. Mills, S. L. Hnute, “An overview of semiconductor photocatalysis”, J. Photochem. Photobiol. A:Chem., 1997, 108, 1.
7.M. Grätzel, “Photoelectrochemical cells”, Nature, 2001, 414, 338.
8.A. Kudo, Y. Miseki, “ Heterogeneous photocatalyst materials for water splitting”, Chem. Soc. Rev. 2009, 38, 253.
9.F. E. Osterloh, “Inorganic Materials as Catalysts for Photochemical Splitting of Water”, Chem. Mater., 2008, 20, 35.
10.K. Sayama, K. Mukasa, R. Abe, Y. Abe, H. Arakawa, “Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an IO3−/I− shuttle redox mediator under visible light irradiation”, Chem. Commun. 2001, 2416.
11.H. Kato, M. Hori, R. Konta, Y. Shimodaira, A. Kudo, “Construction of Z-scheme Type Heterogeneous Photocatalysis Systems for Water Splitting into H2 and O2 under Visible Light Irradiation”, Chem. Lett. 2004, 33, 1348.
12.R. Abe, K. Sayama, H. Sugihara, “Development of new photocatalytic water splitting into H2 and O2 using two different semiconductor photocatalysts and a shuttle redox mediator IO3−/I-”, J. Phys. Chem. B 2005, 109, 16052.
13.A. Kudo, “Development of photocatalyst materials for water splitting”, Inter. J. Hydrogen Energy., 2006, 31, 197.
14.M. Matsuoka, M. Kitano, M. Takeuchi, K. Tsujimaru, M. Anpo, J. Thomas, “Photocatalysis for new energy production: Recent advances in photocatalytic water splitting reactions for hydrogen production”, Catal. Today, 2007, 122, 51.
15.Y. Matsumoto, U. Unal, N. Tanaka, A. Kudo, H. Kato,“Electrochemical approach to evaluate the mechanism of photocatalytic water splitting on oxide photocatalysts ”, J. Solid State Chem., 2004, 177, 4205.
16.N. Nian, C. C. Hu, H. Teng, “Electrodeposited p-type Cu2O for H2 evolution from photoelectrolysis of water under visible light illumination”, Inter. J. Hydrogen Ener., 2008, 33, 2897.
17.Y. Matsumoto, A. Funatsu, D. Matsuo, U. Unal, K. Ozawa, “Electrochemistry of Titanate(IV) Layered Oxides”, J. Phys. Chem. B, 2001, 105, 10893.
18.H. Kato, A. kudo, “Water Splitting into H2 and O2 on Alkali Tantalate Photocatalysts ATaO3 (A = Li, Na, and K)”, J. Phys. Chem. B, 2001, 105, 4285.
19.T. Ishihara, H. Nishiguchi, K. Fukamachi, Y. Takita, “Effects of Acceptor Doping to KTaO3 on Photocatalytic Decomposition of Pure H2O”, J. Phys. Chem. B, 1999, 103, 1.
20.K. Rajeshwar, “Hydrogen generation at irradiated oxide semiconductor–solution interfaces”, J. Appl. Electrochem., 2007,37,765.
21.H. Kato, A. Kudo, “Photocatalytic water splitting into H2 and O2 over various tantalate photocatalysts”, Catal. Today, 2003, 78, 561.
22.A. Kudo, R.Niishiro, A. Iwase, H. Kato, “Effects of doping of metal cations on morphology, activity, and visible light response of photocatalysts”, Chem. Phys., 2007, 339, 104.
23.R. Abe, K. Sayama, K. Domen, H. Arakawa, “Efficient hydrogen evolution from aqueous mixture of I− and acetonitrile using a merocyanine dye-sensitized Pt/TiO2 photocatalyst under visible light irradiation”, Chem. Phys. Lett., 2002, 362, 441.
24.M. Higashi, R. Abe, K. Teramura, T.Takato, B. Ohtani, K. Domen, “Two step water splitting into H2 and O2 under visible light by ATaO2N (A = Ca, Sr, Ba) and WO3 with IO3−/I- shuttle redox mediator”, Chem. Phys. Lett., 2008, 452, 120.
25.K. Maeda, K. Teramura, N. Saito, Y. Inoue, K. Domen, “Photocatalytic Overall Water Splitting on Gallium Nitride Powder”, Bull. Chem. Soc. Jpn. 2007, 80, 1004.
26.K. Maeda, K. Teramura, T. Takata, M. Hara, N. Saito, K. Toda, Y.Inoue, H. Kobayashi, K. Domen, “Overall Water Splitting on (Ga1-xZnx)(N1-xOx) Solid Solution Photocatalyst: Relationship between Physical Properties and Photocatalytic Activity”, J. Phys. Chem. B, 2005, 109, 20504.
27.K. Maeda, H. Terashima, K. Kase, K. Domen, “Nanoparticulate precursor route to fine particles of TaON and ZrO2–TaON solid solution and their photocatalytic activity for hydrogen evolution under visible light”, Appl. Catal. A:Gener., 2009, 357, 206.
28.M. Hara, G. Hitoki, T. Takata, J. N. Kondo, H. Kobayashi, K.Domen, “TaON and Ta3N5 as new visible light driven photocatalysts”, Catal. Today, 2003, 78, 555.
29.X. Zong, H. Yan, G. Wu, G. Ma, F. Wen, L. Wang, C. Li, “Enhancement of Photocatalytic H2 Evolution on CdS by Loading MoS2 as Cocatalyst under Visible Light Irradiation”, J. Am. Chem. Soc., 2008, 130, 7176.
30.X. Wang, K. Maeda, Y. Lee, K. Domen, “Enhancement of photocatalytic activity of (Zn1+xGe)(N2Ox) for visible-light-driven overall water splitting by calcination under nitrogen”, Chem. Phys. Lett., 2008, 457, 134.
31.A. Kudo, I. Mikami, “Photocatalytic activities and photophysical properties of Ga2−xInxO3 solid solution”, J. Chem. Soc., 1998, 94, 2929.
32.I. Tsuji, H. Kato, A. Kudo, “Visible-Light-Induced H2 Evolution from an Aqueous Solution Containing Sulfide and Sulfite over a ZnS–CuInS2–AgInS2 Solid-Solution Photocatalyst”, Angew. Chem. Int. Ed., 2005, 44, 3565.
33.C. C. Lo, C. W. Huang, C. H. Liao and J. C. S. Wu, “Novel twin reactor for separate evolution of hydrogen and oxygen in photocatalytic water splitting”, International Journal of Hydrogen Energy, 2010, 35, 1523.
34.S. C. Yu, C. W. Huang, C. H. Liao, J. C. S. Wu, S. T. Chang and K. H. Chen, “A novel membrane reactor for separating hydrogen and oxygen in photocatalytic water splitting”, Journal of Membrane Science, 2011, 382, 291.
35.T. Takata, K. Shinohara, A. Tanaka, M. Hara, J. N. Kondo, K. Domen, “A highly active photocatalyst for overall water splitting with a hydrated layered perovskite structure”, J. Photochem. Photobio. A: Chem. 1997, 106, 45.
36.K. Sayama, K. Mukasa, R. Abe, Y. Abe and H. Arakawa, “A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis”, J. Photochem. Photobiol., A, 2002, 148, 71.
37.R. Abe, T. Takata, H. Sugihara and K. Domen, “Photocatalytic overall water splitting under visible light by TaON and WO3 with an IO3−/I− shuttle redox mediator”, Chem. Commun., 2005, 3829.
38.M. Higashi, R. Abe, A. Ishikawa, T. Takata, B. Ohtani and K. Domen, “Z-scheme Overall Water Splitting on Modified-TaON Photocatalysts under Visible Light (λ < 500 nm)”, Chem. Lett., 2008, 37, 138.
39.L. J. Minggu, W. R. W. Daud and M. B. Kassim, “An overview of photocells and photoreactors for photoelectrochemical water splitting”, International Journal of Hydrogen Energy, 2010, 35, 5233.
40.C. C. Hu, J. N. Nian and H. Teng, “Electrodeposited p-type Cu2O as photocatalyst for H2 evolution from water reduction in the presence of WO3”, Solar Energy Materials and Solar Cells, 2008, 92, 1071.
41.S. Ida, K. Yamada, T. Matsunaga, H. Hagiwara, Y. Matsumoto and T. Ishihara, “Preparation of p-Type CaFe2O4 Photocathodes for Producing Hydrogen from Water”, Journal of American Chemical Society, 2010, 132, 17343.
42.R. Abe, “Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation”, Journal of Photochemistry and Photobiology C-Photochemistry Reviews, 2010, 11, 179.
43.W. B. Ingler and S. U. M. Khan, “A Self-Driven p /n‐Fe2O3 Tandem Photoelectrochemical Cell for Water Splitting”, Electrochemical and Solid State Letters, 2006, 9, G144.
44.S. G. Yang, X. Quan, X. Y. Li, Y. Z. Liu, S. Chen and G. H. Chen, “Preparation, characterization and photoelectrocatalytic properties of nanocrystalline Fe2O3/TiO2, ZnO/TiO2, and Fe2O3/ZnO/TiO2 composite film electrodes towards pentachlorophenol degradation”, Physical Chemistry Chemical Physics, 2004, 6, 659.
45.N. Sato, Electrochemistry at Metal and Semiconductor Electrodes;Elsevier, New York, 1998.
46.Yanqing Cong, Hyun S. Park, Shijun Wang, Hoang X. Dang, Fu-Ren F. Fan, C. Buddie Mullins, “Synthesis of Ta3N5 Nanotube Arrays Modified with Electrocatalysts for Photoelectrochemical Water Oxidation”, J. Phys. Chem. C, 2012, 116, 14541.
47.K. P. Wang, H. S. Teng, “Structure-intact TiO2 nanoparticles for efficient electron transport in dye-sensitized solar cells”, Appl. Phys. Lett., 2007, 91, 173102.
48.K. Shankar, G. K Mor, H. E Prakasam, S. Yoriya, M. Paulose, O. K Varghese, C. A Grimes, “Highly-ordered TiO2 nanotube arrays up to 220 µm in length: use in water photoelectrolysis and dye-sensitized solar cells”, Nanotechnology. 2007, 18, 065707.
49.P. Chatchai, Y. Murakami, S.-Y. Kishiokal, A. Y. Nosaka, Y. Nosaka, “Efficient photocatalytic activity of water oxidation over WO3/BiVO4 composite under visible light irradiation”, Electrochimica Acta., 2009, 54, 1147.
50.Finklea, H.O. Semiconductor Electrode;Elsevier, New York, 1988.
51.Memming, R. Semiconductor Electrochemistry;Wiley-VCH, New York, 2001.
52.李佩珊,“孔洞性三氧化鎢薄膜光分解水電極之製備與研究”,國立成功大學化學工程研究所碩士論文, 2007.
53.Macdonald, J.R. Impedance Spectroscopy:Emphasizing Solid Materials and Systems;Wiley, New York, 1987.
54.Brett, C.M.A.;Brett, A.M.O.Electrochemistry:Principles, Methods, and Applications;Oxford, New York, 1993.
55.Adlkofer, K.;Tanaka, M. “Stable Surface Coating of Gallium Arsenide with Octadecylthiol Monolayers”, Langmuir, 2001, 17, 4267.
56.N.E. Brese, F.J. Disalvo, M. O’Keeffe, P. Rauch. “Structure of Ta3N5 at 16 K by time-of-flight neutron diffraction”, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1991, 47, 2291.
57.高濂、鄭珊、張青紅,“奈米光觸媒”,五南出版社, 2004.
58.O. Carp, C.L. Huisman, A. Reller, “Photoinduced reactivity of titanium dioxide”, Solid State Chemistry, 2004, 32, 33.
59.Peter Kroll, Timon Schroter, and Martina Peters, “Prediction of Novel Phases of Tantalum(V) Nitride and Tungsten(VI) Nitride That Can Be Synthesized under High Pressure and High Temperature”, Angew. Chem. Int. Ed., 2005, 44, 4249.
60.Stuart J. Henderson, Andrew L. Hector, “Structural and compositional variations in Ta3N5 produced by high-temperature ammonolysis of tantalum oxide”, Solid State Chemistry, 2006, 179, 3518.
61.Chiun-Teh Ho, Ke-Bin Low, Robert F. Klie, Kazuhiko Maeda, Kazunari Domen, Randall J. Meyer and Preston T. Snee, “Synthesis and Characterization of Semiconductor Tantalum Nitride Nanoparticles”, J. Phys. Chem. C, 2011, 115, 647.
62.Hitoki, G., Ishikawa A., Takata, T., Kondo, J. N., Hara, M., Domen, K., “Ta3N5 as a Novel Visible Light-Driven Photocatalyst (λ<600 nm)”, Chem. Lett. 2002, 31, 736.
63.V. Zwilling, M. Aucouturier, E. Darque-Ceretti, “Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach”, Electrochimica Acta, 1999, 45, 921.
64.D. Gong, C.A. Grimes, O.K. Varghese, W. Hu, R.S. Singh, Z. Chen, E.C. Dickey, “Titanium oxide nanotube arrays prepare by anodic oxidation”, Material Research Society, 2001,16, 3331.
65.I. Sieber, H. Hildebrand, A. Friedrich, and P. Schmuki, “Formation of self-organized niobium porous oxide on niobium”, Electrochem. Commun., 2005, 7, 97.
66.H. Tsuchiya, J. M. Macak, I. Sieber, L. Taveira, A. Ghicov, K. Sirotna, and P. Schmuki, “Self-organized porous WO3 formed in NaF electrolytes”, Electrochem. Commun., 2005, 7, 295.
67.H. Masuda and K. Fukuda, “Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina”, Science, 1995, 268, 1466.
68.Irina V. Sieber and Patrik Schmuki, “Porous Tantalum Oxide Prepared by Electrochemical Anodic Oxidation”, Journal of The Electrochemical Society, 2005, 152 (9), C639.
69.Hany A. El-Sayed and Viola I. Birss, “Controlled interconversion of nanoarray of ta dimples and high aspect ratio ta oxide nanotubes”, Nano Lett., 2009, 9, 1350.
70.B. D. Cullity, S. R. Stock, “Elements of X-ray Diffraction 3rd ed ”, Prentice Hall, 2001.
71.M. Yan, F. Chem. J. Zhang, M. Anpo, “Preparation of controllable crystalline titania and study on the photocatalytic properties”, J. Phys. Chem. B, 2005, 109, 8673.
72.D. G. Barton, M. Shtein, R. D. Wilson, S. L. Solied, E. Iglesia, “Structure and Electronic Properties of Solid Acids Based on Tungsten Oxide Nanostructures”, J. Phys. Chem. B, 1999, 103, 630.
73.蔡承達,“鎵化合物光觸媒在分解水產氧之應用”,國立成功大學化學工程研究所碩士論文,2012.
74.陳俊吉,“金屬氧化物半導體在可見光分解水製氫之研究”,國立成功大學化學工程學系碩士論文 ,2005.
75.Nian, J.-N. and Teng, H., “Hydrothermal Synthesis of Single-Crystalline Anatase TiO2 Nanorods with Nanotubes as the Precursor.”, J. Phys. Chem. B, 2006, 110, 4193.
76.Masanobu Higashi, Kazunari Domen and Ryu Abe, “Highly stable water splitting on oxynitride TaON photoanode system under visible light irradiation”, J. Am. Chem. Soc., 2012, 134, 6968.
77.H. Wang, T. Lindgren, J. He, A. Hagfeldt, S.-E. Lindquist, “Photolelectrochemistry of Nanostructured WO3 Thin Film Electrodes for Water Oxidation: Mechanism of Electron Transport”, J. Phys. Chem. B, 2000, 104, 5686.
78.Masanobu Higashi, Kazunari Domen and Ryu Abe, “Fabrication of efficient TaON and Ta3N5 photoanodes for water splitting under visible light irradiation”, Energy Environ. Sci., 2011, 4, 4138.
79.鄒宜錚,“醇類蒸氣處理對三氧化鎢博膜光電化學反應影響之研究”,國立成功大學化學工程學系碩士論文 ,2009.