簡易檢索 / 詳目顯示

研究生: 高彗凌
Kao, Huei-ling
論文名稱: 探討重複感染病人之自然性免疫缺失
The innate immune deficiency in patients with repeated infections
指導教授: 謝奇璋
Shieh, Chi-Chang
王貞仁
Wang, Jen-Ren
學位類別: 碩士
Master
系所名稱: 醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 60
中文關鍵詞: 免疫缺失
外文關鍵詞: immune deficiency
相關次數: 點閱:101下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自然性免疫力為人類免疫系統的第一道防線且與後天性免疫一樣重要。 當自然性免疫力出現缺失的時候,人們會變得容易遭受到病源的感染。 在過去的報導中,前人曾提到抗原辨認受器、細胞激素受器或其相關的訊息傳遞分子若發生基因突變,則會導致病人容易遭受到細菌、結核菌、病毒、或者是黴菌感染。 因此,我們假設這些易遭受感染的病人在自然性免疫力中是有缺失的。 所以,我們試著利用系統性的方法來證明這個假設。 我們利用了抗原辯認受器的刺激物(toll-like receptor agonists)、肺結核桿菌疫苗(BCG)加上 IL-12或 IFN-γ、PMA結合 ionomycin 或小兒麻痺疫苗株第二型病毒 (poliovirus type II) 來刺激病人的白血球藉以觀察其細胞激素的分泌。 我們偵測的細胞激素包括 IFN-γ, IFN-alpha, IL-12, IL-6, IL-1β, IL-10 以及 TNF-alpha,欲藉著比較病人與正常人的細胞激素有何差異來找出免疫缺失之處。 我們共試驗了一位 hyper-IgM sydrome病人、兩位 chronic granulomatous disease 病人、一位CD4 T cells 低下的病人。 我們發現 hyper-IgM sydrome病人表現了低量的IL-12和IFN-γ以及IFN-α,還有較高的IL-10表現,顯示了病人可能有免疫系統不平衡的現象。 而Chronic granulomatous disease 病人因為較大量的IL-6和IL-1beta表現,而顯示了過度發炎 (hyper-inflammatory) 的現象。 另一位CD4 T cells低下的病人,根據他低下的IFN-γ, IL-12 以及IFN-α表現,加上肺結核菌疫苗結合IFN-γ或IL-12的刺激,病人的反應雖然比正常人略低,但是也證實了病人的 IFN-γ 及 IL-12 受器應該是沒有發生突變。 此外,我們也證實了這位病人並沒有 IFN-γ的自體抗體 (autoantibody) 。 我們利用這個方法發現的一些結果可以呼應病人的狀況,也希望可以更進一步的利用這個方法來找到病人可能突變的基因或者可以使這個方法可以有臨床上的應用。

    Innate immunity, as well as acquired immune response, has been documented to be important for host defense. Induction of the innate immune responses depends on recognition of pathogen components by host pattern-recognition receptors including Toll-like receptors (TLRs). Many TLR signaling-related (IRAK-4, NEMO, et al) and cytokine-related (IFN-γ, STAT-1, et al) gene mutations have been found to lead to susceptibility to infections. Some patients are repeatedly infected with bacteria, mycobacteria or viruses. We hypothesize that these patients may have deficiencies in their innate immune responses. In this project, we tried to identify the mechanism underlying the infection susceptibility in these immunodeficient patients using a systematic approach. We took whole blood from susceptible patients and stimulate that with poliovirus sabin type 2 strain, TLR agonists, BCG combined with IL-12 or IFN-, or PMA/ionomycin. A comprehensive panel of cytokines including IFN-α, IFN-γ, IL-12, IL-6, IL-1, IL-10 and TNF-α was measured in the same sample by using a multiple cytokines suspension array system. Therefore, these cytokine responses in susceptible patients including hyper-IgM (HIGM) syndrome, chronic granulomatous disease (CGD), and selective CD4 cells deficiency patients were addressed. In our results, the hyper-inflammatory phenotype of CGD patients after stimulations was showed by higher IL-1beta and IL-6 productions. Cytokine profiles of the HIGM patient showed impaired T-helper-1 immunity because of very low IL-12 production, lower IFN-, IFN-, and higher IL-10 productions. By analyzing the cytokine response of a “selective CD4 T cells deficiency” patient, we found that the patient has impaired IFN- and IL-12 productions. Potential defects including IFN-gamma receptor deficiency, IL-12 receptor deficiency, and IFN- autoantibody have been excluded. The method we established in this study will help to identify the cellular defects and gene mutations involved in deficiency of innate immunity. The results will unravel innate immune responses to pathogenic microorganisms and may provide useful information for future clinical applications.

    Abstract……………………………………………………………I 中文摘要………………………………………………………......II Table of Contents………………………………………………...III List of Figures……………………………………………………..V 1. Introduction…………………………………………………….1 1.1 Innate immunity………………………………………………........1 1.2 Innate immunity to bacteria………………………………….. …..1 1.3 Innate immunity to viruses……………………………………. ….2 1.4 The role of toll-like receptors in innate immunity………………..3 1.5 Cytokines in innate immunity……………………………………...4 1.6 The congenital deficiencies of innate immunity…………………...5 1.6.1 Chronic granulomatous disease (CGD)……………………...6 1.6.2 The effects in innate immunity of X-linked hyper-IgM syndrome due to CD40-ligand deficiency……………………7 1.7 The aim of this study………………………………………………..8 2. Material and Methods…………………………………………..9 2.1 Patients and healthy donors………………………………………….9 2.2 Peripheral blood mononuclear cells (PBMC) isolation…………...10 2.3 Poliovirus propagation and titration………………………….........10 2.4 Poliovirus stimulation and infection of PBMC…………………….11 2.5 Toll-like receptor agonists, BCG combined with IFN-r or IL-12, and PMA/ionomycin stimulation of PBMC…………………..........11 2.6 IFN-gamma autoantibody detection…………………………..........12 2.7 Determine cytokine concentrations by enzyme-linked immunoassay (ELISA)………………………………………………13 2.8 Determine cytokine concentrations by beadlyte suspension array system…………………………………………………….........14 3. Results………………………………………………………....15 3.1 Polioviruses can stimulate healthy PBMCs and lead to cytokine productions…………………………………………..........15 3.2 Determining the time point of cytokine productions from PBMCs in response to TLR agonists………………………………16 3.3 The cytokine profile of the HIGM patient…………………………17 3.4 The cytokine profiles of the CGD patient………………………….18 3.5 To address defects of the patient with CD4 T cells deficiency…....19 4. Discussion……………………………………………………….21 4.1 CD40 ligand is important to stimulate APCs and IL-12 production……………………………………………………………22 4.2 CGD patients show the hyper-inflammatory phenotype in absence of ROS production…………………………………………………...23 4.3 The patient with selective CD4 T-cells deficiency……………….....24 Conclusion …………………………………………………………….....25 5. Reference………………………………………………………...26

    References:

    Adler V, Y.Z., Tew KD, Ronai Z. (1999). Role of redox potential and reactive oxygen species in stress signaling. Oncogene 19, 6104-6111.

    Akira S, T.K. (2004). Toll-like receptor signalling. Nat Rev Immunol 4, 499-511.
    Baeuerle PA, H.T. (1994). Function and activation of NF-kappa B in the immune system. Annu Rev Immunol 12, 141-179.

    Bylund J, M.K., Brown KL, Mydel P, Collins LV, Hancock RE, Speert DP. (2007). Enhanced inflammatory responses of chronic granulomatous disease leukocytes involve ROS-independent activation of NF-kappa B. Eur J Immunol 37, 1087–1096.

    Cardenes M, v.B.H., García-Saavedra A, Santiago E, Puel A, Ku CL, Emile JF, Picard C, Casanova JL, Colino E, Bordes A, Garfia A, Rodríguez-Gallego C. (2005). Autosomal recessive interleukin-1 receptor-associated kinase 4 deficiency in fourth-degree relatives. J Pediatr 148 549-551.

    Casanova JL, A.L. (2004). The human model: a genetic dissection of immunity to infection in natural conditions. Nat Rev Immunol 4, 55-66.

    Chapel H, P.A., von Bernuth H, Picard C, Casanova JL. (2005). Shigella sonnei meningitis due to interleukin-1 receptor-associated k inase-4 deficiency: first association with a primary immune deficiency. Clin Infect Dis 40, 1227–1231.

    Dabbagh K, L.D. (2003). Toll-like receptors and T-helper-1/T-helper-2 responses. Curr Opin Infect Dis 16, 199-204.

    Dupuis S, J.E., Al-Hajjar S, Fieschi C, Al-Mohsen IZ, Al-Jumaah S, Yang K, Chapgier A, Eidenschenk C, Eid P, Al Ghonaium A, Tufenkeji H, Frayha H, Al-Gazlan S, Al-Rayes H, Schreiber RD, Gresser I, Casanova JL. (2001). Impairment of mycobacterial but not viral Immunity by a germline human STAT1 mutation. Science 293, 300-303.

    Dupuis S, J.E., Al-Hajjar S, Fieschi C, Al-Mohsen IZ, Al-Jumaah S, Yang K, Chapgier A, Eidenschenk C, Eid P, Al Ghonaium A, Tufenkeji H, Frayha H, Al-Gazlan S, Al-Rayes H, Schreiber RD, Gresser I, Casanova JL. (2003). Impaired response to interferon-alpha/beta and lethal viral disease in human STAT1 deficiency. Nat Genet 33, 388-391.

    Durandy A, P.S., Fischer A. (2006). Hyper-IgM syndromes. Curr Opin Rheumatol 18, 369-376.

    Feinberg J, F.C., Doffinger R, Feinberg M, Leclerc T, Boisson-Dupuis S, Picard C, Bustamante J, Chapgier A, Filipe-Santos O, Ku CL, de Beaucoudrey L, Reichenbach J, Antoni G, Baldé R, Alcaïs A, Casanova JL. (2004). Bacillus Calmette Gue´ rin triggers the IL-12/IFN-r axis by an IRAK-4- and NEMO-dependent, non-cognate interaction between monocytes, NK,and T lymphocytes. Eur J Immunol 34, 3276-3284.

    Filipe-Santos O, B.J., Haverkamp MH, Vinolo E, Ku CL, Puel A, Frucht DM, Christel K, von Bernuth H, Jouanguy E, Feinberg J, Durandy A, Senechal B, Chapgier A, Vogt G, de Beaucoudrey L, Fieschi C, Picard C, Garfa M, Chemli J, Bejaoui M, Tsolia MN, Kutukculer N, Plebani A, Notarangelo L, Bodemer C, Geissmann F, Israël A, Véron M, Knackstedt M, Barbouche R, Abel L, Magdorf K, Gendrel D, Agou F, Holland SM, Casanova JL. (2005). X-linked susceptibility to mycobacteria is caused by mutations in NEMO impairing CD40-dependent IL-12 production. J Exp Med 203, 1745-1759.

    Grewal IS, F.R. (1998). CD40 and CD154 in cell-mediated immunity. Annu Rev Immunol 16, 111-135.

    Hernandez MG, S.L., Rock KL. (2007). CD40-CD40 ligand interaction between dendritic cells and CD8+ T cells is needed to stimulate maximal T cell responses in the absence of CD4+ T cell help. J Immunol 178, 2844-2852.

    Jackson, S.H., Gallin, J. I. and Holland, S. M. (1995). The p47phox mouse knockout model of chronic granulomatous disease. Journal of Experiments Medicine 182, 751–758.

    Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J.M., and Hoffmann, J.A. (1996). The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973-983.

    Medvedev AE, L.A., Kuhns DB, Blanco JC, Salkowski C, Zhang S, Arditi M, Gallin JI, Vogel SN. (2003). Distinct mutations in IRAK-4 confer hyporesponsiveness to lipopolysaccharide and interleukin-1 in a patient with recurrent bacterial infections. J Exp Med 198, 521–531.
    Minegishi Y, S.M., Morio T, Watanabe K, Agematsu K, Tsuchiya S, Takada H, Hara T, Kawamura N, Ariga T, Kaneko H, Kondo N, Tsuge I, Yachie A, Sakiyama Y, Iwata T, Bessho F, Ohishi T, Joh K, Imai K, Kogawa K, Shinohara M, Fujieda M, Wakiguchi H, Pasic S, Abinun M, Ochs HD, Renner ED, Jansson A, Belohradsky BH, Metin A, Shimizu N, Mizutani S, Miyawaki T, Nonoyama S, Karasuyama H. (2006). Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity 25, 745-755.

    Moore KW, d.W.M.R., Coffman RL, O'Garra A. (2001). Interlukin 10 and the interlukin 10 receptor. Annu Rev Immunol 19, 683-765.

    Nonoyama S, H.D., Aruffo A, Ledbetter JA, Ochs HD. (1993). B cell activation via CD40 is required for specific antibody production by antigen-stimulated human B cells. J Exp Med 178, 1097-1102.

    Notarangelo LD, D.M., Ugazio AG. (1992). Immunodeficiency with hyper-IgM (HIM). Immunodefic Rev 3, 101-121.

    Picard C, P.A., Bonnet M, Ku CL, Bustamante J, Yang K, Soudais C, Dupuis S, Feinberg J, Fieschi C, Elbim C, Hitchcock R, Lammas D, Davies G, Al-Ghonaium A, Al-Rayes H, Al-Jumaah S, Al-Hajjar S, Al-Mohsen IZ, Frayha HH, Rucker R, Hawn TR, Aderem A, Tufenkeji H, Haraguchi S, Day NK, Good RA, Gougerot-Pocidalo MA, Ozinsky A, Casanova JL. (2003). Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science 299, 2076–2079.

    Quezada SA, J.L., Lind EF, Noelle RJ. (2004). CD40/CD154 interactions at the interface of tolerance and immunity. Annu Rev Immunol 22, 307-328.

    Schindler, C., Darnell, J. E., Jr. (1995). Transcriptional responses to polypeptide ligands: the JAK-STAT pathway. Annunal Review Biochemistry 64, 621-651.

    Stetson DB, M.R. (2006). Type I interferons in host defense. Immunity 25, 373-381.

    Takeda K, A.S. (2005). Toll-like receptors in innate immunity. Int Immunol 17, 1-14.
    Vreugdenhil GR, W.P., Netea MG, van der Meer JW, Melchers WJ, Galama JM. (2000). Enterovirus-induced production of pro-inflammatory and T-helper cytokines by human leukocytes. Cytokine 12, 1793-1796.
    Wahid R, C.M., Chow M. (2005). Dendritic cells and macrophages are productively infected by poliovirus. J Virol 79, 401-409.

    Yang K, P.A., Zhang S, Eidenschenk C, Ku CL, Casrouge A, Picard C, von Bernuth H, Senechal B, Plancoulaine S, Al-Hajjar S, Al-Ghonaium A, Maródi L, Davidson D, Speert D, Roifman C, Garty BZ, Ozinsky A, Barrat FJ, Coffman RL, Miller RL, Li X, Lebon P, Rodriguez-Gallego C, Chapel H, Geissmann F, Jouanguy E, Casanova JL. (2005). Human TLR-7-, -8-, and -9-mediated induction of IFN-alpha/beta and -lambda Is IRAK-4 dependent and redundant for protective immunity to viruses. Immunity 23, 465-478.

    Zhai Y, M.L., Gao F, Wang Y, Busuttil RW, Kupiec-Weglinski JW. (2006). CD4+ T regulatory cell induction and function in transplant recipients after CD154 blockade is TLR4 independent. J Immunol 176, 5988-5994.

    下載圖示 校內:立即公開
    校外:2007-08-21公開
    QR CODE