簡易檢索 / 詳目顯示

研究生: 福瑞妮
ROSANI FIKRINA
論文名稱: 抑制TGF-β及TNF-α誘導肺癌細胞H1299之MMP9及MMP2表現研究
The Study of Inhibition of Matrix-Metalloproteinase 9 and 2 Expression in TGF-β-Induced and TNF-α-Induced Lung Cancer Cell Line H1299
指導教授: 蕭世裕
Shaw, Shyh-Yu
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 36
外文關鍵詞: H1299 cells, MMP-2, MMP-9, TNF-α, TGF-β
相關次數: 點閱:51下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Lung cancer is one of the cancer cases with the highest mortality rate where the majority of cancer-associated deaths are caused by metastasis. It suggests that reducing the rate of cancer mortality through control of metastasis may be a promising strategy. Matrix-metalloproteinase family especially matrix-metalloproteinase-9 (MMP-9) and matrix-metalloproteinase-2 (MMP-2) activity exhibit important cell behavior such as migration, apoptosis, and proliferation. Transforming growth factor-β (TGF-β) and Tumor Necrosis Factor-α (TNF-α) are types of cytokines that could stimulate the expression of MMP-9 and MMP-2. The purpose of this study is to know the activities of conventional drugs Q and D against MMP-2 and MMP-9 expression levels induced by TGF-β and TNF-α cytokine in the H1299 cells line. This study was using a cytotoxic assay in Q and D also zymography to detect the expression level of MMP-9 or MMP-2. Our results indicated that both Q and D could reverse the TGF-β-induced and TNF-α-induced MMP via SMAD, NF-κB, and JNK signaling pathways. As a consequence, D and Q might be novel agents for the treatment of lung adenocarcinoma.

    ACKNOWLEDGMENT iii ABSTRACT iv LIST OF CONTENTS v LIST OF FIGURES vii ABBREVIATION LIST viii CHAPTER 1 Introduction 1 1-1. Non-Small Cell Lung Cancer (NSCLC) 1 1-2. Metastasis in NSCLCs 2 1-3. TGF-β Induced Metastasis 2 1-4. TNF-α Induced Metastasis 3 1-5. TGF-β and TNF-α enhance MMP-9 and MMP-2 expression 3 1-6. The principle of MTT assay 4 1-7. The principle of MTS assay 5 1-8. The principle of zymography 5 CHAPTER 2 Research of Purpose 7 CHAPTER 3 Materials and Methods 9 3-1. Materials 9 3-1-1. Cell Culture 9 3-1-2. Gelatin Zymography 9 3-2. Methods 10 3-2-1. Cell lines and culture condition 10 3-2-2. MTS assay 10 3-2-3. MTT assay 10 3-2-4. Gelatin Zymography assay 11 3-2-5. Migration assay 12 CHAPTER 4 RESULT 13 4-1. Cytotoxicity assay of D and Q 13 4-2. Cytotoxicity assay of TNF-α and TGF-β 13 4-3. Cytotoxicity assay of inhibitors 13 4-4. D and Q reversed TNF-α-induced expression of MMP-9 in H1299 cells 14 4-5. D and Q down-regulated MMP-9 and MMP-2 expression in TGF-β-induced 14 4-6. D and Q inhibit migration of H1299 cells 14 4-7. Inhibition effect of Q on TNF-α-induced EMT in Lung Cancer H1299 cells through the TNF-α NF-κB Pathways 15 4-8. Inhibition effect of D on TGF-β-induced EMT in Lung Cancer H1299 cells through the SMAD and Pathways 15 CHAPTER 5 DISCUSSION 17 CHAPTER 6 CONCLUSION 20 CHAPTER 7 REFERENCES 21 APPENDIX 26

    1. World Health organization, International agency for research on cancer. Available: http://globocan.iarc.fr/Pages/fact_sheets_ population.aspx [Accessed June 2021].
    2. Hsu, J. C., Wei, C-F., Yang, S-C., Lin, P-C., Lee, Y-C., Lu C. Y., 2020, Lung Cancer Survival and Mortality in Taiwan following the initial Launch of Targeted Therapies: an Interrupted time Series Study, BMJ Open, 10, 1-9.
    3. Malhotra, J., Malvezzi, M., Negri, E., Vecchia C. L., Boffetta, P., 2016, Risk Factors for Lung Cancer Worldwide, Eur Respir J: Lung Cancer. 1-14.
    4. Zheng, M., 2016, Classification and Pathology of Lung Cancer, Surg Oncol Clin N Am, 25, 447-468.
    5. Hann, C. L., Rudin C. M, 2008, Management of Small-Cell Lung Cancer: Incremental Changes but Hope for the Future, Oncology Williston Park, 22, 1486–1492. [PubMed: 19133604].
    6. Chaffer, C. L., and Robert A. W., 2011, Review: A Perspective on Cancer Cell Metastasis, Science, 331 (6024), 1559-1564.
    7. Dillekas, H., Michael S. R., and Oddbjorn S., 2019, Are 90% of deaths from cancer caused by metastases?, Cancer med, 8: 5574-5576.
    8. Popper, H. H., 2016, Progression and metastasis of Lung Cancer, Cancer Metastasis Rev, 35:75-91.
    9. Nakamura, N., Iijima, T., Mase, K., Furuya, S., Kano, J., Morishita, Y., and Noguchi, M, 2004, Phenotypic Differences of Proliferating Fibroblasts in the Stroma of Lung Adenocarcinoma and Normal Bronchus Tissue, Cancer Science, 95, 226–232.
    10. Xu, J., Lamouille, S., and Derynck, R., 2009, TGF-β-induced Epithelial to Mesenchymal Transition, Cell Res, 19, 156–172.
    11. Ikushima, H., Miyazono, K., 2010, TGF-β Signalling: A Complex Web in Cancer Progression, Nat Rev Cancer, 10, 415–424.
    12. Massague, J., 2008, TGF-β in Cancer, Cell, 134, 215–230.
    13. Chunli, D. A., Yuting, L., Yiyi, Z., Kai, L., And Ruozheng, W., 2016, Nobiletin Inhibits Epithelial-Mesenchymal Transition of Human Non-Small Cell Lung Cancer Cells by Antagonizing the TGF-β1/Smad3 Signaling Pathway, ONCOLOGY REPORTS, 35, 2767-2774.
    14. Yingyi, L., Zhiyao, R., Biaoyan, D., Shangping, X., Shaowei, H., et al, 2019, Structure Identification of ViceninII Extracted from Dendrobium officinale and the Reversal of TGF-β1-Induced Epithelial–Mesenchymal Transition in Lung Adenocarcinoma Cells through TGF-β/Smad and PI3K/Akt/mTOR Signaling Pathways, Molecules, 24 (144), 1-17.
    15. Josephs, S. F., Thomas, E. I., Stephen, M. P., Santosh, K., Francesco, M. M., Anton, R. E., and Amir, J., 2018, Unleashing Endogenous TNF-Alpha as a Cancer Immunotherapeutic, J. Transl Med, 16, 242.
    16. Wu, Y., and Zhou, B. P., 2010, TNF-α/NF-κB/Snail Pathway in Cancer Cell Migration and Invasion, Br. J. Cancer, 102, 639–644.
    17. Lee, S. Y., 2021, Anti-Metastatic and Anti-Inflammatory Effects of Matrix Metalloproteinase Inhibition by Ginsenosides, Biomedicines, 9, 198.
    18. Murphy, G., Nagase, H., 2008, Progress in matrix metalloproteinase research, Mol. Aspects Med, 29 (5), 290-308.
    19. Quintanilla, M., Castillo, G. del., Kocić, J., Santibañez, J. F., 2012, TGF-β and MMPs: A complex regulatory loop involved in tumor progression, Matrix Metalloproteinases: Biology, Functions and Clinical Implications, 1-37.
    20. Han, A.R., Lim, T.G., Song, Y.R., Jang, M., Rhee, Y.K., Hong, H.D., Kim, M.H., Kim, H.J., Cho, C.W., 2018, Inhibitory Effect of Opuntia humifusa Fruit Water Extract on Solar Ultraviolet-Induced MMP-1 Expression, Int. J. Mol. Sci, 19, 2530.
    21. Yan, C., and Boyd, D. D., 2007, Regulation of matrix metalloproteinase gene expression, J Cell Physiol, 211(1), 19-26.
    22. Lin, C. Y., Hsieh, Y. H., Yang, S. F., Chu, S. C., Chen, P. N., Hsieh, Y. S., 2017, Cinnamomum Cassia Extracts Reverses TGF-β1-Induced Epithelial–Mesenchymal Transition in Human Lung Adenocarcinoma Cells and Suppresses Tumor Growth in Vivo, Environmental Toxicology, 32, 1878–1887.
    23. Kim, E. S., Kim, M. S., Moon, A., 2004, TGF-β-induced upregulation of MMP-2 and MMP-9 depends on p38 MAPK, but not ERK signaling in MCF10A human breast epithelial cells, International Journal Of Oncology, 25, 1375-1382.
    24. Zare, Z., Tina, N. D., Armaghan, L., Zakieh, S. S., Amirhooman, A., Mana, Z., Fahimeh, H., Omid, A., Mojtaba, A., Parisa, K., 2020, Silibinin Inhibits TGF-β-induced MMP-2 and MMP-9 Through Smad Signaling Pathway in Colorectal Cancer HT-29 Cells, Basic & Clinical Cancer Research, 12 (2), 81-90.
    25. Muscella, A., Carla, V., Luca, G. C., Santo, M., 2020, TGF-β1 activates RSC96 Schwann cells migration and invasion through MMP-2 and MMP-9 activities, Journal of Neurochemistry, 153, 525–538.
    26. Hagemann, T., Wilson, J., Kulbe, H., Li, N. F., Leinster, D. A., Charles, K., Klemm, F., Pukrop, T., Binder, C., Balkwill, F. R., 2005, Macrophages induce invasiveness of epithelial cancer cells via NF-kappa B and JNK, J Immunol, 175, 1197–1205.
    27. Cohen, M., Arielle, M., Luise, H., Paul, B., 2006, Involvement of MAPK pathway in TNF-a-induced MMP-9 expression in human trophoblastic cells, Molecular Human Reproduction, 12(4), 225–232.
    28. Lee, E. J., Wun, J. K., Sung, K. M., 2010, Cordycepin Suppresses TNF-alpha-induced Invasion, Migration and Matrix Metalloproteinase-9 Expression in Human Bladder Cancer Cells, Phytotherapy Research, 24, 1755–1761.
    29. Wolczyk, D., Magdalena, Z. C., Anita, H. J., Renata, T., Krzysztof, G., Aleksander, F. S., Katarzyna, A., 2016, TNF-α Promotes Breast Cancer Cell Migration and Enhances the Concentration of Membrane-Associated Proteases in Lipid Rafts, Cell Oncol, 39, 353–363.
    30. Mosmann, T., 1983, Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays, Journal of Immunological Methods, 65 (1-2), 55–63.
    31. Cole, S., 1986, Rapid chemosensitivity testing of human lung tumor cells using the MTT assay, Cancer Chemotherapy Pharmacology, 17 (3), 259– 263.
    32. Morgan, D. M., 1998, Tetrazolium (MTT) Assay for Cellular Viability and Activity, Methods Mol Biol, 79, 179-183.
    33. Kamiloglu, S., Gulce, S., Tugba, O., Esra C., 2020, Guidelines for cell viability assays, Food Frontiers, 1, 332-349.
    34. Hall, M. D., Martin, C., Ferguson, D. J., Phillips, R. M., Hambley, T. W., and Callaghan, R., 2004, Comparative Efficacy of Novel Platinum (IV) Compounds with Established Chemotherapeutic Drugs in Solid Tumour Models, Biochemical Pharmacology, 67 (1), 17–30.
    35. Wilson, W. R., and Hay, M. P., 2011, Targeting Hypoxia in Cancer Therapy, Nature Reviews Cancer, 11(6), 393–410.
    36. Abbott, A., 2003, Biology’s New Dimension, Nature, 424, 870–872.
    37. Präbst, K., Engelhardt, H., Ringgeler, S., and Hübner, H., 2017, Basic colorimetric proliferation assays: MTT, WST, and resazurin. In D. F. Gilbert & O. Friedrich (Eds.), Cell viability assays (pp. 1–17). Totowa, NJ: Humana Press.
    38. Aslantürk, O. S., 2017, In Vitro Cytotoxicity and Cell Viability Assays: Principles, Advantages, and Disadvantages, IntechOpen, 1-17.
    39. Riss, T. L., Moravec, R. A., Niles, A. L., et al, 2013, Cell Viability Assays, The Assay Guidance Manual, National Center for Biotechnology Information.
    40. Ren, Z., Chen J., Khalil R. A., 2017, Zymography as a Research Tool in the Study of Matrix Metalloproteinase Inhibitors, Methods Mol Biol, 1626, 79-102.
    41. Patricia, A. M., Beurden, S-V., Hoff, J. W. V., 2005, Zymographic Techniques for the Analysis of Matrix Metalloproteinases and Their Inhibitors, BioTechniques, 38, 78-83.
    42. Hilary, A. K., Lisa, M. C., Lengye, E., 2008, The Initial Steps of Ovarian Cancer Cell Metastasis are Mediated by MMP-2 Cleavage of Vitronectin and Fibronectin, J Clin Invest, 118(4), 1367-1379.
    43. Barillari, G., 2020, the Impact of Matrix Metalloproteinase-9 on the Sequential Steps of the Metastatic Process, Int. J. Mol. Sci, 21, 4526.
    44. Baek, S. H. Jeong, H. K., Jong, H. L., Chulwon, K., Hanwool, L., Dongwoo, N., Junhee L., et all, 2017, Ginkgolic Acid Inhibits Invasion and Migration and TGF-b-Induced EMT of Lung Cancer Cells Through PI3K/Akt/mTOR Inactivation, Journal of Cellular Physiology, 232, 346–354.
    45. Barton, M. K., 2015, Patients of All Ages with Advanced Non-Small Cell Lung Cancer are not Receiving Chemotherapy, CA Cancer J. Clin, 65, 337–338. [CrossRef] [PubMed]
    46. Xiao, D., and He, J., 2010, Epithelial mesenchymal transition and lung cancer, J. Thorac Dis, 2, 154–159.
    47. Costanza., B., Umelo, I. A., Bellier, J., Castronovo, V., and Turtoi, A., 2017, Stromal Modulators of TGF-β in Cancer, Journal of Clinical Medicine, 6, 7.
    48. Yang, C-M., Hsieh, H-L., and Lee, C-W., 2005, Intracellular Signaling Mechanisms Underlying the Expression of Pro-inflammatory Mediators in Airway Diseases, Chang Gung Med J, 28 (12), 813-822.

    下載圖示 校內:2025-01-29公開
    校外:2025-01-31公開
    QR CODE