| 研究生: |
李志洋 Li, Jhih-Yang |
|---|---|
| 論文名稱: |
晶圓級相機鏡頭之壓印製程研究 Study on Compression Molding for Wafer-Level Camera Lenses |
| 指導教授: |
李輝煌
Lee, Huei-Huang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 鏡頭 、壓印製程 、厚度差 、均勻度 、散熱 |
| 外文關鍵詞: | Lens, Compression Molding, Thickness Difference, Uniformity, Heat Dissipation |
| 相關次數: | 點閱:107 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文「晶圓級相機鏡頭之壓印製程之研究」主要的研究方向可分為三個部分,第一個部分是透過有限元素法模擬壓印製程的壓印過程,找出壓印過程的壓力分布,再去探討此壓力分布所造成的形變量,最後再與實際的壓印情形去做認證;第二部分是針對壓印動作完成後的照光固化的部分,將整個LED燈源模組進行光照均勻度的最佳化;第三個部分則是針對LED燈源模組的散熱系統做一個散熱的模擬。由於近年來,智慧型手機、平板電腦…等產品的需求量大幅上升,相機鏡頭的需求也隨之上升,隨著這些消費性電子產品越來越輕薄與平價,相機模組也就有了微型化與低價化的趨勢,這時候晶圓級相機技術才隨之受到注目,然而晶圓級相機鏡頭是利用UV固化壓印技術所產生的,而此技術在壓印過程中會產生壓力不均的情形,此情形將會導致整個產品產生厚度差的情形;另外,關於照光固化的部分,也因為光照均勻度的問題,導致整個產品的外圍部分固化速率過慢;此外,照光模組也引發了相對應的散熱溫度問題。
本研究將透過電腦模擬的方式,先利用模流分析軟體Moldex3D進行壓印時的模擬,找出壓印完成後壓力的分布情形,再將此壓力分布匯入到ANSYS去觀測其壓力分布所對應的變形量;接著針對LED燈源模組進行初步的模擬,再將初步模擬所得到的經驗應用到實際的機台上,並且與實際光照情形進行比對;最後則是針對與實際燈源模組所採用的散熱風箱進行模擬,確認LED光照模組所產生的廢熱不會對LED造成影響。透過本研究,可以預測出壓印製程所產生的厚度差,並且找出較佳的光照模組,甚至模擬了LED燈源最害怕的溫度問題,相信本研究一定對於晶圓級相機技術的開發有一定程度上的幫助。
There are three primary parts in this thesis. First, using the finite element simulation to simulate compression molding process, acquiring the pressure distribution in the end of compression molding process, and predicted the deformation corresponded to the pressure distribution, and then verified it with real deformation. Second, the optical simulations of LED module are used for the UV curing at the end of compression molding, and then optimize the uniformity for LED module. Third, we simulate the cooling system for the LED module.
The need of smart phones and pad computers is increasing dramatically among years, so as the need of camera lenses. Since these products became slighter and cheaper than before, the current trends is toward slightness and low price for camera modules. Then, the wafer-level camera technology attracts attention. The wafer-level camera lenses are produced by compression molding. On the process of compression molding, the pressure distribution was not uniform. It would produce thickness difference in our products, which is not allowed in real production. As for the UV curing, there were uniformity problem of the LED module. It would produce the different curing velocity of the final product. Otherwise, the LED module would cause the problem of heat dissipation.
As a result, this study used computer simulation to simulate this process. First, we used the Moldex3D to simulate compression molding process, and found the pressure distribution. Then, we used the ANSYS to predict the deformation corresponded to the pressure distribution. Second, we used the TracePro to simulate the optical case for the LED module, and confirmed this simulation result with experiment data. Finally, we simulated the cooling system of the LED module to observe the final temperature of this system. This study predicted the thickness difference, optimized the LED module and observed the final temperature of the cooling system through computer simulation, which could help improve compression molding process.
[1] D. Qin, Y. N. Xia, and G. M. Whitesides, "Soft lithography for micro- and nanoscale patterning," Nat. Protoc. 5, 491-502, 2010.
[2] Stephen Y. Chou and Peter R. Krauss, "Imprint lithography with 25-nanometer resolution," Science 272, Issue 5258, 85-87, 1996.
[3] S. V. Sreenivasan and C. G. Wilson, "Design of orientation stages for step and flash imprint lithography," Precision Engineering - Journal of the International Societies for Precision Engineering and Nanotechnology 25, 192-199, 2001.
[4] Y. N. Xia and G. M. Whitesides, "Soft lithography," Annu. Rev. Mater. Sci. 28, 153-184, 1998.
[5] J. T. M. Stevenson and A. M. Gundlach, "The Application of Photolithography to the Fabrication of Microcircuits," Journal of Physics E-Scientific Instruments 19 (9), 654-667, 1986.
[6] Su-dong Moon, Namsuk Lee and Shinill Kang,” Fabrication of a microlens array using micro-compression molding with an electroformed mold insert,” Journal of Micromechanics and Microengineering, 13, 98-103, 2003.
[7] Allen Y. Yi and Anurag Jain, “Compression Molding of Aspherical Glass Lenses–A Combined Experimental and Numerical Analysis,” Journal of American Ceramic Society 88(3), 579-586, 2005.
[8] 許瑋宗,新型導光板對背光模組暗區現象消除之研究,國立中山大學碩士論文,2008。
[9] 林裕博,自製平板是直壓印機與其應用,國立中央大學碩士論文,2010。
[10] 洪立群,IC封裝元件翹曲分析之研究,國立成功大學博士論文,2004。
[11] R. Hull, T. Chraska, Y. Liu and D. long, “Microcontact Printing: Nem Mastering and Transfer Techniques for High Throughput, Resolution and Depth of Focus, “ Material Science and Engineering, PP. 383-392, 2002.
[12] 鍾文仁,陳佑任,IC封裝製程與CAE應用(修定版),全華科技圖書,2005。
[13] 陳嘉勳,環氧樹脂反應成型充填與硬化模擬,國立清華大學博士論文,1995。
[14] 李輝煌,ANSYS工程分析-基礎與觀念,高立圖書有限公司出版,台灣,2005。
[15] 科盛科技,Moldex3D R12 訓練手冊,科盛科技股份有限公司,2013。
[16] 科盛科技,Moldex3D/Solid真實三維模流分析理論與應用,科盛科技股份有限公司,2009。
[17] ANSYS Icepak 12.1 User’s Guide, Release 12.1, ANSYS, Inc, 2009.
[18] ANSYS Icepak Tutorials, Release 13.0, ANSYS, Inc., 2010.
[19] 訊技科技,TracePro快速學習手冊,五南圖書出版股份有限公司,2007。
校內:2019-08-18公開