| 研究生: |
歐士豪 Ou, Shih-hao |
|---|---|
| 論文名稱: |
含損傷內涵時間黏塑性理論對Sn/Ag/Cu銲錫低應變率疲勞及熱循環耦合循環熱-力行為及不同應變率疲勞初始壽命預估 Sn/Ag/Cu Solder Low Strain Rate Thermal Cycling Behavior and Fatigue Initiation Life Prediction via The Endochronic Viscoplasticity with Damage |
| 指導教授: |
李超飛
Lee, C. F. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 含損傷內涵時間黏塑性理論 、熱循環 、疲勞初始壽命 |
| 外文關鍵詞: | Thermal Cycling, Fatigue Initiation Life, Endochronic Viscoplasticity with Damage |
| 相關次數: | 點閱:142 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文利用內涵時間黏塑性理論模擬Wei等人對Sn/3.9Ag/0.6Cu銲錫材料於低應變率疲勞及熱循環耦合之熱-力負載實驗,考慮銲錫材料於熱循環情況下晶粒因而成長,對核心函數做適當修正,則在In-phase模式下計算之循環應力-應變行為與實驗數據相當吻合,在Out-phase模式下之模擬結果與Wei等人Damage-Coupled Constitutive Model之模擬結果趨勢一致。本文再以Zeng等人對Sn/3.8Ag/0.7Cu(equiaxed)銲錫材料之實驗,利用內涵時間黏塑性理論模擬其應力-應變行為,並由實驗之應力振幅-壽命圖求得損傷D與循環圈數N之關係,再以含損傷內涵時間黏塑性理論計算銲錫受損傷之應力-應變行為,於材料發生buckling前皆能吻合實驗數據,接著以Coffin-Manson修正式預估D=0.25時之疲勞壽命,對不同應變率之疲勞壽命皆能有效預估,進而得知即使相同材料但微結構不同,疲勞壽命之趨勢也有差異,與Zeng等人觀察不同微結構(equiaxed/dendritic)之破壞機制有所區別符合。
Sn/3.9Ag/0.6Cu experimental at low strain rate and thermal cycling coupled of Wei et. al., in this paper, using Endochronic viscoplasticity established cyclically hysteresis loops. Consider material will age under thermal cycle, the kernel function must be modified. The results and the experimental data were in very good agreement under In-phase condition, and had almost the same trend with that of the Damage-Coupled Constitutive Model of Wei et. al. under Out-phase condition.Sn/3.8Ag/0.7Cu(equiaxed) experimental of Zeng et. al., the Endochronic viscoplasticity was used to simulate cyclic stress-strain hysteresis loops. By stress amplitude vs. life data could compute D-N relation, the Endochronic viscoplasticity with damage was used to simulate Sn/3.8Ag/0.7Cu(equiaxed) cyclic stress-strain hysteresis loops with damage under strain amplitude 0.8% provided by Zeng et. al. in temperature 298K. The results were in very good agreement with data before the material buckling. Modified Coffin-Manson relationship was derived and used to predict the data of fatigue initiation life very effectively, and then fatigue initiation life was distinction under different microstructure. This result was to conform to the fracture mechanism under different microstructure
[1] Wei, Y., Lau, K. J., Vianco, P. and Fang, H. E., “Behavior of Lead-Free Solder under Thermomechanical Loading”, ASME J. Electronic Packaging., Vol. 126, pp. 367-373, 2004.
[2] Zeng, Q., Wang, Z., Xian, A. and Shang, J., “Cyclic Softening of the Sn-3.8Ag-0.7Cu Lead-Free Solder Alloy with Equiaxed Grain Structure”, Journal of Electronic Materials, Vol. 34, No.1, pp62-67, 2005.
[3] Shang, J. K., Zeng, Q. L., Zhang, L. and Zhu, Q. S., “Mechanical Fatigue of Sn-rich Pb-free Solder Alloys”, J. of Mater. Sci : Mater. in Electron., Vol. 18(1-3), pp. 211-227, 2007.
[4] Zeng, Q., Wang, Z. and Shang, J., ”Microstructural Effects on Low Cycle Fatigue of Sn-3.8Ag-0.7Cu Pb-free Solder”, Key Engineering Materials, Vols. 345-346, pp.239-242, 2007.
[5] Lee, C. F. and Shieh, T. J., “Theory of Endochronic Cyclic Viscoplasticity of Eutectic Tin/Lead Solder Alloy,” J. of Mech.,Vol. 22, No.3, pp.181-191, 2006.
[6] Lee, C. F. and Chen, Y. C., “Thermodynamic Formulation of Endochronic Cyclic Viscoplasticity with Damage-Application to Eutectic Sn/Pb Solder Alloy”, J. of Mech., Vol. 23, No.4, pp. 433-444, 2007.
[7] 李志豪,Sn/Au/Cu循環熱-力行為及疲勞初始壽命預估-含損傷內涵時間黏塑性理論之應用,碩士論文-國立成功大學工程科學系,2007。
[8] Valanis, K. C., “A Theory of Viscoplasticity Without a Yield Surface Part І. General Theory,” Archives of Mechanics, pp. 517-533, 1971.
[9] Valanis, K. C., “Fundamental Consequences of a New Intrinsic Time Measure : Plasticity as a Limit of The Endochronic Theory,” Archives of Mechanics, Vol. 32, pp. 171-191, 1980.
[10] Lee, C. F., “Recent Finite Element Applications of the Incremental Endochronic Plasticity,” International Journal of Plasticity, Vol. 11, No.7, pp. 843-865, 1995.
[11] Lee, C. F.,“Numerical Method of The Incremental Endochronic Plasticity”, The Chinese Journal of Mechanics, Vol.8, No.4, pp. 377-396, 1992.
[12] Lau, J., Low Cost Flip Chip Technologies For DCA, WLCSP, and PBGA Assemblies, McGraw-Hill, New York, 2000.
[13] Lau, J., Dauksher, W. and Vianco, P.,”Acceleration Models, Constitutive Equations, and Reliability of Lead-Free Solders and Joints”, 2003 Electronic Components and Technology Conference., pp. 229-236, 2003.
[14] 謝同進,60/40銲錫內涵時間循環黏塑性理論,碩士論文-國立成功大學工程科學系,2003。
[15] Fix A. R. and Nuchter W., ”Microstructural changes of lead-free solder joints during long-term ageing, thermal cycling and vibration fatigue”, Soldering & Surface Mount Technology., Vol. 20, pp. 13-21, 2008.
[16] Thornton, P. A. and Colangelo V. J., Fundamentals of Engineering Materials, Prentice-Hall, N.J., 1986.
[17] Lee, C. F., “A Systematic Method of Determining Material Functions in the Endochronic Plasticity,” J. the Chinese Society of Mechanical Engineers, Vol. 8, pp. 419-430, 1987.
[18] Stolkarts, V., Keer, L. M. and Fine, M. E., “Damage Evolution Governed by Microcrack Nucleation with Application to the Fatigue of 63Sn-37Pb Solder,” J. Mech. Phys. Solids Packaging, Vol. 47, pp. 2451-2468, 1999.