簡易檢索 / 詳目顯示

研究生: 歐士豪
Ou, Shih-hao
論文名稱: 含損傷內涵時間黏塑性理論對Sn/Ag/Cu銲錫低應變率疲勞及熱循環耦合循環熱-力行為及不同應變率疲勞初始壽命預估
Sn/Ag/Cu Solder Low Strain Rate Thermal Cycling Behavior and Fatigue Initiation Life Prediction via The Endochronic Viscoplasticity with Damage
指導教授: 李超飛
Lee, C. F.
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 81
中文關鍵詞: 含損傷內涵時間黏塑性理論熱循環疲勞初始壽命
外文關鍵詞: Thermal Cycling, Fatigue Initiation Life, Endochronic Viscoplasticity with Damage
相關次數: 點閱:142下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文利用內涵時間黏塑性理論模擬Wei等人對Sn/3.9Ag/0.6Cu銲錫材料於低應變率疲勞及熱循環耦合之熱-力負載實驗,考慮銲錫材料於熱循環情況下晶粒因而成長,對核心函數做適當修正,則在In-phase模式下計算之循環應力-應變行為與實驗數據相當吻合,在Out-phase模式下之模擬結果與Wei等人Damage-Coupled Constitutive Model之模擬結果趨勢一致。本文再以Zeng等人對Sn/3.8Ag/0.7Cu(equiaxed)銲錫材料之實驗,利用內涵時間黏塑性理論模擬其應力-應變行為,並由實驗之應力振幅-壽命圖求得損傷D與循環圈數N之關係,再以含損傷內涵時間黏塑性理論計算銲錫受損傷之應力-應變行為,於材料發生buckling前皆能吻合實驗數據,接著以Coffin-Manson修正式預估D=0.25時之疲勞壽命,對不同應變率之疲勞壽命皆能有效預估,進而得知即使相同材料但微結構不同,疲勞壽命之趨勢也有差異,與Zeng等人觀察不同微結構(equiaxed/dendritic)之破壞機制有所區別符合。

    Sn/3.9Ag/0.6Cu experimental at low strain rate and thermal cycling coupled of Wei et. al., in this paper, using Endochronic viscoplasticity established cyclically hysteresis loops. Consider material will age under thermal cycle, the kernel function must be modified. The results and the experimental data were in very good agreement under In-phase condition, and had almost the same trend with that of the Damage-Coupled Constitutive Model of Wei et. al. under Out-phase condition.Sn/3.8Ag/0.7Cu(equiaxed) experimental of Zeng et. al., the Endochronic viscoplasticity was used to simulate cyclic stress-strain hysteresis loops. By stress amplitude vs. life data could compute D-N relation, the Endochronic viscoplasticity with damage was used to simulate Sn/3.8Ag/0.7Cu(equiaxed) cyclic stress-strain hysteresis loops with damage under strain amplitude 0.8% provided by Zeng et. al. in temperature 298K. The results were in very good agreement with data before the material buckling. Modified Coffin-Manson relationship was derived and used to predict the data of fatigue initiation life very effectively, and then fatigue initiation life was distinction under different microstructure. This result was to conform to the fracture mechanism under different microstructure

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VII 符號說明 XI 第一章 緒論 1 1-1 研究動機 1 1-2 文獻回顧 2 第二章 含損傷內涵時間黏塑性理論 4 2-1 內涵時間黏塑性理論 4 2-2 內涵損傷下演化方程式 7 2-3 單軸拉伸時循環損傷與非彈性應變範圍之關係 9 2-4 含損傷內涵時間黏塑性理論 11 第三章 Sn/3.9Ag/0.6Cu銲錫低應變率疲勞與熱循環耦合之穩態循環內涵時間黏塑性熱-力行為 13 3-1 本章介紹 13 3-2 材料參數 14 3-3 內涵時間黏塑性理論計算低應變率疲勞與熱循環耦合之熱- 力行為 15 3-4 含 relaxation之內涵時間黏塑性理論模擬循環熱-力行為之結果與討論 17 第四章 Sn/3.8Ag/0.7Cu (equiaxed)銲錫含循環損傷內涵時間黏塑性理論對不同應變率下疲勞初始壽命之預估 22 4-1 本章介紹 22 4-2 內涵時間黏塑性理論材料參數之決定(D=0) 23 4-2-1 材料參數之決定 24 4-2-2 材料參數K及 之決定 25 4-2-3 以指數遞減函數近似核心函數 26 4-2-4 定溫、定應變振幅、不同應變率時材料函數 之決定 27 4-3 及 之循環損傷因子的決定 29 4-4 及 下應力-應變遲滯曲線計算結果與實驗比較 31 4-5 及 之循環應力-非彈性應變關係式 32 4-6 及 下Coffin-Manson修正式預估疲勞初始壽命 34 第五章 結論 38 附表 40 附圖 42 參考文獻 78 自述 81

    [1] Wei, Y., Lau, K. J., Vianco, P. and Fang, H. E., “Behavior of Lead-Free Solder under Thermomechanical Loading”, ASME J. Electronic Packaging., Vol. 126, pp. 367-373, 2004.
    [2] Zeng, Q., Wang, Z., Xian, A. and Shang, J., “Cyclic Softening of the Sn-3.8Ag-0.7Cu Lead-Free Solder Alloy with Equiaxed Grain Structure”, Journal of Electronic Materials, Vol. 34, No.1, pp62-67, 2005.
    [3] Shang, J. K., Zeng, Q. L., Zhang, L. and Zhu, Q. S., “Mechanical Fatigue of Sn-rich Pb-free Solder Alloys”, J. of Mater. Sci : Mater. in Electron., Vol. 18(1-3), pp. 211-227, 2007.
    [4] Zeng, Q., Wang, Z. and Shang, J., ”Microstructural Effects on Low Cycle Fatigue of Sn-3.8Ag-0.7Cu Pb-free Solder”, Key Engineering Materials, Vols. 345-346, pp.239-242, 2007.
    [5] Lee, C. F. and Shieh, T. J., “Theory of Endochronic Cyclic Viscoplasticity of Eutectic Tin/Lead Solder Alloy,” J. of Mech.,Vol. 22, No.3, pp.181-191, 2006.
    [6] Lee, C. F. and Chen, Y. C., “Thermodynamic Formulation of Endochronic Cyclic Viscoplasticity with Damage-Application to Eutectic Sn/Pb Solder Alloy”, J. of Mech., Vol. 23, No.4, pp. 433-444, 2007.
    [7] 李志豪,Sn/Au/Cu循環熱-力行為及疲勞初始壽命預估-含損傷內涵時間黏塑性理論之應用,碩士論文-國立成功大學工程科學系,2007。
    [8] Valanis, K. C., “A Theory of Viscoplasticity Without a Yield Surface Part І. General Theory,” Archives of Mechanics, pp. 517-533, 1971.
    [9] Valanis, K. C., “Fundamental Consequences of a New Intrinsic Time Measure : Plasticity as a Limit of The Endochronic Theory,” Archives of Mechanics, Vol. 32, pp. 171-191, 1980.
    [10] Lee, C. F., “Recent Finite Element Applications of the Incremental Endochronic Plasticity,” International Journal of Plasticity, Vol. 11, No.7, pp. 843-865, 1995.
    [11] Lee, C. F.,“Numerical Method of The Incremental Endochronic Plasticity”, The Chinese Journal of Mechanics, Vol.8, No.4, pp. 377-396, 1992.
    [12] Lau, J., Low Cost Flip Chip Technologies For DCA, WLCSP, and PBGA Assemblies, McGraw-Hill, New York, 2000.
    [13] Lau, J., Dauksher, W. and Vianco, P.,”Acceleration Models, Constitutive Equations, and Reliability of Lead-Free Solders and Joints”, 2003 Electronic Components and Technology Conference., pp. 229-236, 2003.
    [14] 謝同進,60/40銲錫內涵時間循環黏塑性理論,碩士論文-國立成功大學工程科學系,2003。
    [15] Fix A. R. and Nuchter W., ”Microstructural changes of lead-free solder joints during long-term ageing, thermal cycling and vibration fatigue”, Soldering & Surface Mount Technology., Vol. 20, pp. 13-21, 2008.
    [16] Thornton, P. A. and Colangelo V. J., Fundamentals of Engineering Materials, Prentice-Hall, N.J., 1986.
    [17] Lee, C. F., “A Systematic Method of Determining Material Functions in the Endochronic Plasticity,” J. the Chinese Society of Mechanical Engineers, Vol. 8, pp. 419-430, 1987.
    [18] Stolkarts, V., Keer, L. M. and Fine, M. E., “Damage Evolution Governed by Microcrack Nucleation with Application to the Fatigue of 63Sn-37Pb Solder,” J. Mech. Phys. Solids Packaging, Vol. 47, pp. 2451-2468, 1999.

    下載圖示 校內:2009-07-25公開
    校外:2013-07-25公開
    QR CODE