簡易檢索 / 詳目顯示

研究生: 邱志偉
Chiu, Chih-Wei
論文名稱: AB與AA型堆疊石墨帶的光譜
Optical Spectra of AB- and AA-Stacked Nanographite Ribbons
指導教授: 林明發
Lin, Ming-Fa
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2002
畢業學年度: 90
語文別: 英文
論文頁數: 62
中文關鍵詞: 光譜奈米石墨帶
外文關鍵詞: Optical Spectra, Nanographite Ribbons
相關次數: 點閱:79下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • AB與AA堆疊的石墨帶有著顯著的吸收峰.
    幾何結構包括邊界結構, 石墨帶寬度和堆疊型式, 以及極化方向強烈的關係著石墨帶的光譜.
    1.armchair和zigzag十分的不同
    2.吸收峰的頻率和數目身受石墨帶的寬度影響 .
    3.AB堆疊系統比之AA, 其吸收峰較多且光譜強度較弱.
    4.吸收峰具有高度的非等方性,其中AA堆疊系統中的A平行=0與石墨之比較有其相同, 相異處.

    The absorption spectra of the AB- and AA-stacked nanographite ribbons have several prominent peaks. They strongly depend on the edge structure, the ribbon width, the stacking sequence, and the polarization direction.
    The armchair ribbons quite differ from the zigzag ribbons. The frequency and the number of the absorption peaks are affected by the ribbon width. The AB-stacked systems have lower threshold absorption frequency, more absorption peaks, and weaker spectral intensity, as compared with the AA-stacked systems. The absorption spectra are highly anisotropic. The optical excitations of the parallel polarization are absent in the AA-stacked systems. comparison with graphite is discussed.

    Contents Abstract I. INTRODUCTION …………………………………………2 II. THE π-ELECTRONIC STRUCTURES …………………………………………5 III. THE OPTICAL ABSORPTION SPECTRA ………………………………………..14 IV. CONCLUDING REMARKS ………………………………………..25 Appendixes APPENDIX A ……………………………………….30 APPENDIX B ……………………………………….32 APPENDIX C : Programs ……………………………………….33 APPENDIX D : Electronic Specific Heat of Nanographite Ribbons ……………………………………….54

    1.Iijima, Nature 354, 56 (1991).
    2.M. Murakami, S. Iijima, and S. Yoshimura, J. Appl. Phys. 60, 3856 (1986).
    3.M. Yudasaka, Y. Tanaka, M. Tanaka, H. Kamo, Y. Ohki, and S. Usami, Appl. Phys. Lett. 64, 3237 (1994).
    4.H. Kajii, K. Yoshino, T. Sato, and T. Yamabe, J. Phys. D: Appl. Phys. 33, 3146 (2000).
    5.M. Fujita, M. Igami, and K. Nakada, J. Phys. Soc. Jpn. 66, 1864 (1997).
    6.M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, J. Phys. Soc. Jpn. 65, 1920 (1996).
    7.K. Nakada, M. Fujita, G. Dresselhaus, and M. Dresselhaus, Phys. Rev. B 54, 17954 (1996).
    8.R. Ramprasad, P. V. Allmen, and L. R. C. Fonseca, Phys. Rev. B 60, 6023 (1999).
    9.T. Kawai, Y. Miyamoto, O. Sugino, and Y. Koga, Phys. Rev. B 62, 16349 (2000).
    10.Y. Miyamoto, K. Nakada, and M. Fujita, Phys. Rev. B 59, 9858 (1999).
    11.F. L. Shyu, M. F. Lin, C. P. Chang, R. B. Chen, J. S. Shyu, Y. C. Wang, and C. H. Liao, J. Phys. Soc. Jpn. 70, 3348 (2000) (band structures of armchair ribbons in this paper have numerical errors; they would be revised).
    12.K. Nakada, M. Igami, and M. Fujita, J. Phys. Soc. Jpn. 67, 2388 (1998).
    13.M. F. Lin, M. Y. Chen, and F. L. Shyu, J. Phys. Soc. Jpn. 70, 2513 (2001).
    14.K. Wakabayashi, M. Sigrist, and M. Fujita, J. Phys. Soc. Jpn. 67, 2089 (1998).
    15.K. Wakabayashi, M. Fujita, H. Ajiki, and M. Sigrist, Phys. Rev. B 59, 8271 (1999).
    16.K. Harigaya, J. Phys.:Condens. Matter 13, 1295 (2001); Chem. Phys. Lett. 339, 23 (2001); ibid, 340, 123 (2001).
    17.Y. Shibayama, H. Sato, T. Enoki, and M. Endo, Phys. Rev. Lett. 84, 1744 (2000).
    18.O. E. Andersson, B. L. V. Prasad, H. Sato, T. Enoki, Y. Hishiyama, Y. Kaburagi, M. Yoshikawa, and S. Bandow, Phys. Rev. B 58, 16387 (1998).
    19.B. L. V. Prasad, H. Sato, T. Enoki, Y. Hishiyama, Y. Kaburagi, A. M. Rao, P. C. Eklund, K. Oshida, and M. Endo, Phys. Rev. B 62, 11209 (2000).
    20.B. L. V. Prasad, H. Sato, T. Enoki, Y. Hishiyama, Y. Kaburagi, A. M. Rao, G. U. Sumanasekera, and P. C. Eklund, Phys. Rev. B 64, 235407 (2001).
    21.Y. Shibayama, H. Sato, T. Enoki, X. X. Bi, M. Dresselhaus, and M. Endo, J. Phys. Soc. Jpn. 69, 754 (2000).
    22.K. Takai, H. Sato, T. Enoki, N. Yoshida, F. Okino, H. Touhara, and M. Endo, J. Phys. Soc. Jpn. 70, 175 (2001).
    23.K. Wakabayashi, and M. Sigrist, Phys. Rev. Lett. 84, 3390 (2000); K. Wakabayashi, Phys. Rev. B 64, 125428 (2001).
    24.K. Tada, and K. Watanabe, Phys. Rev. Lett. 88, 127601 (2002).
    25.M. F. Lin, and F. L. Shyu, J. Phys. Soc. Jpn. 69, 3529 (2000).
    26.C. W. Chiu, M. F. Lin, and F. L. Shyu, Physica E 11, 356 (2001).
    27.J. G. Johnson, and G. Dresselhaus, Phys. Rev. B 7, 2275 (1973).
    28.R. Ahuja, S. Auluck, J. M. Wills, M. Alouani, B. Johansson, and O. Eriksson, Phys. Rev. B 55, 4999 (1997).
    29.E. A. Taft, and H. R. Philipp, Phys. Rev. 138, A197 (1965).
    30.J. C. Charlier, X. Gonze, and J. P. Michenaud, Phys. Rev. B 43, 4579 (1991).
    31.J. C. Charlier, J. P. Michenaud, and X. Gonze, Phys. Rev. B 46, 4531 (1992).
    32.J. C. Charlier, J. P. Michenaud, X. Gonze, and J. P. Vigneron, Phys. Rev. B44, (1991) 13237.
    33.G. D. Mahan, Many-Particle Physics (Plenum, New, York, 1990).
    34.J. Blinowski, N. H. Hau, C. Rigaux, J. P. Vieren, R. L. Toullee, G. Furdin, A. Herold, and J. Melin, J. Phys. (Paris) 41, 47 (1980).
    35.M. F. Lin, and K. W. -K. Shung, Phys. Rev. B 50, 17744 (1994).
    36.W. A. de Heer, W. S. Bacsa, A. Chalelain, T. Gerifin, R. Humphrey-Baker, L. Forro, and D. Vargte, Science 268, 845 (1995).

    下載圖示 校內:立即公開
    校外:2002-06-14公開
    QR CODE