簡易檢索 / 詳目顯示

研究生: 吳易
Wu, Yi
論文名稱: 60-及77-GHz CMOS人造磁導體嵌入式天線及相位陣列天線毫米波晶片
60- and 77-GHz Millimeter-Wave CMOS On-Chip Artificial-Magnetic-Conductor Antennas and Integrated Phased-Array Antenna RFIC
指導教授: 莊惠如
Chuang, Huey-Ru
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 88
中文關鍵詞: 人造磁導體互補式金屬氧化物半導體毫米波晶片天線相位陣列天線
外文關鍵詞: artificial-magnetic-conductor(AMC), CMOS, millimeter-wave(MMW), on-chip antenna, phased-array antenna
相關次數: 點閱:117下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文設計研製毫米波CMOS射頻晶片嵌入式天線及相位陣列天線毫米波晶片,包含60-GHz CMOS整合人造磁導體螺旋單極子天線與小型化雙模態帶通濾波器(TSMC CMOS 90-nm)、60-GHz CMOS人造磁導體單極子螺旋帶通濾波天線(TSMC CMOS 90-nm)、77-GHz CMOS人造磁導體1×2摺合式偶極子天線陣列(TSMC CMOS 18-μm)、及應用於60-GHz相位陣列射頻接收系統之CMOS人造磁導體2x2單極子天線陣列之毫米波整合射頻晶片(TSMC CMOS 90-nm)。論文包含毫米波射頻晶片嵌入式天線設計概念與量測考量,天線使用ANSYS 3-D全波電磁模擬軟體HFSS進行模擬。人造磁導體結構改善CMOS射頻晶片嵌入式天線之輻射效率,人造磁導體2×2相位陣列單極子天線與可變增益低雜訊放大器與相移器之毫米波整合射頻晶片結合主動電路與陣列天線,達到波束掃描的功能。天線毫米波晶片之訊號饋入皆以共面波導方式設計,量測上採用fully on-wafer measurement方式來進行量測。

    This thesis presents the research of millimeter-wave (MMW) CMOS on-chip antennas fabricated using TSMC 90-nm and 0.18-μm CMOS standard process. The three-dimensional (3D) EM simulator HFSS is used for design and simulation. The designed MMW on-chip antennas including: (1) a 60-GHz CMOS integrated on-chip artificial-magnetic-conductor (AMC) spiral monopole-antenna with compact folded loop dual-mode bandpass filter; (2) a 60-GHz CMOS AMC bandpass-filtering spiral monopole-antenna; (3) a 77-GHz CMOS AMC 1×2 folded dipole antenna array; (4) a 60-GHz CMOS AMC 2×2 monopole-antenna phased array receiving subsystem with integrated aariable-gain low-noise amplifier (VG-LNA) and phase shifter. The AMC structures are utilized in the designed on-chip antenna to reduce the CMOS substrate loss and improve radiation efficiencies. The measured performances of the designed MMW on-chip antennas are all conducted by the on-wafer measurement setup.

    目錄 第一章 緒論 1 1.1 研究動機與背景[1][2] 1 1.2 論文架構 1 第二章 60-GHz CMOS整合人造磁導體螺旋單極子天線與小型化雙模態帶通濾波器 3 2.1 人造磁導體及小型化螺旋單極子天線基本原理 3 2.1.1 人造磁導體基本原理與架構簡介[1][2] 3 2.1.2 小型化螺旋單極子天線 8 2.2 60-GHz CMOS整合人造磁導體螺旋單極子天線與小型化雙模態帶通濾波器 10 2.2.1 架構簡介 11 2.2.2 設計流程與考量 12 2.2.3 模擬與量測結果 13 2.3 結果與討論 25 第三章 60-GHz CMOS人造磁導體單極子螺旋濾波天線 29 3.1 濾波天線設計與分析[2][28][29] 29 3.1.1 λ/4共振器 29 3.1.2 λ/4螺旋單極子天線與帶通濾波天線 31 3.2 60-GHz CMOS人造磁導體單極子濾波天線 32 3.2.1 架構簡介 32 3.2.2 設計流程與考量 33 3.2.3 模擬與量測結果 34 3.3 結果與討論 43 第四章 77-GHz CMOS人造磁導體1×2摺合式偶極子天線陣列 47 4.1 摺合式偶及子極子天線基本原理[1][3][4] 47 4.2 77-GHz CMOS 人造磁導體1×2摺合式偶極子天線陣列 49 4.2.1 架構簡介 49 4.2.2 設計流程與考量 50 4.2.3 模擬與量測結果 51 4.3 結果與討論 58 第五章 應用於60-GHz相位陣列射頻接收系統之CMOS人造磁導體2×2單極子天線陣列之毫米波整合晶片 63 5.1 相位陣列天線基本原理 63 5.2 應用於60-GHz相位陣列射頻接收系統之CMOS人造磁導體 65 2×2單極子天線陣列之毫米波整合晶片 65 5.2.1 架構簡介 65 5.2.2 設計流程與考量 67 5.2.3 模擬與量測結果 68 5.3 結果與討論 79 第六章 結論 83 參考文獻 85

    [1] 岳翰林,毫米波CMOS射頻晶片嵌入式天線及人造磁導體嵌入式天線之研製,國立成功大學電腦與通信工程研究所,碩士論文,民國一百零一年一月。
    [2] 莊詠翔,60-及77-GHz毫米波GIPD射頻晶片天線/濾波天線及CMOS人造磁導體嵌入式天線之研製,國立成功大學電腦與通信工程研究所,碩士論文,民國一百零一年七月。
    [3] C. A. Balanis, Antenna Theory and Design, 2nd ed. New York: Wiley, 1997
    [4] C. A. Balanis, Antenna Theory and Design, 3rd ed. New York: Wiley, 2005
    [5] D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alex´opolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microw. Theory Tech., vol. 47, no. 11, pp. 2059-2074, Nov. 1999.
    [6] C. R. Simovski, P. de Maagt, and I. V. Melchakova, “High-Impedance Surface Having Stable Resonance with Respect to Polarization Incidence Angle,” IEEE Trans. Antennas Propag., vol. 53, no. 3, Mar., 2005.
    [7] F. Costa, A. Monorchio, and G. Manara, “Analysis and Design of Ultra Thin Electromagnetic Absorbers Comprising Resistively Loaded High Impedance Surfaces,” IEEE Trans. Antennas Propag., vol. 58, no. 5, May, 2010.
    [8] R. J. Langley, and A. J. Drinkwater, “An improved empirical model for the Jerusalem cross,” IEEE Proc. H, Microwaves, Opt. & Antennas, vol. 129, pp. 1-6, Feb., 1982.
    [9] M. K. T. Al-Nuaimi, and W. G. Whittow, “Low profile dipole antenna backed by isotropic Artificial Magnetic Conductor reflector,” EuCAP 2010, Barcelona, Spain, Apr., 2010.
    [10] A. E. I. Lamminen, A. R. Vimpari, and J. Saily, “UC-EBG on LTCC for 60-GHz Frequency Band Antenna Application,” IEEE Trans. Antennas Propag., vol. 57, no. 10, Oct., 2009.
    [11] X. Y. Bao, Y. X. Guo and Y. Z. Xiong, “60-GHz AMC-Based Circularly Polarized On-Chip Antenna Using Standard 0.18-μm CMOS Technology,” IEEE Trans. Antennas Propag., vol. 60, no. 5, May, 2012.
    [12] J. S. Hong and M. J. Lancaster, “Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters,” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 2099-2108, Dec. 1996.
    [13] K. Q. d. Costa, V. Dmitriev, and C. Rodrigues, “Fractal Spiral Monopoles: Theoretical Analysis and Bandwidth Optimization,” IEEE IMOC, pp. 650-653, July. 2005.
    [14] K. L. Wong, G. Y. Lee, and T. W. Chiou, “A Low-Profile Planar Monopole Antenna for Multiband Operation of Mobile Handsets,” IEEE Trans. Antennas Propag. , vol. 51, no. 1, pp. 121-125, Jan., 2003.
    [15] K. L. Wong, Planar Antennas for Wireless Communications, Chapter 3. New York: Wiley, 2003.
    [16] F. Yang, and Y. Rahmat-Samii, “Reflection Phase Characterization of the EBG Ground Plane for Low Profile Wire Antenna Application,” IEEE Trans. Antenna Propag., vol. 51, pp. 2691-2703, Oct. 2003.
    [17] L. Wolff, “Microstrip bandpass filter using degenerate modes of a microstrip ring resonator,” Electron. Lett., vol. 8 no. 12, Jun. 1972.
    [18] J. S. Hong and M.J. Lancaster, “Microstrip bandpass filter using degenerate modes of a novel meander loop resonator.” IEEE Microwave Guided Wave Lett., vol. 5, pp. 371-372, Nov. 1995.
    [19] L. H. Hsieh and K. Chang, “Compact Low insertion-loss, sharp-rejection, and wide-bend microstrip bandpass filters” IEEE Trans. Microw. Theory Tech., vol. 51,no. 4, Apr. 2003.
    [20] L. H. Hsieh and K. Chang, “Dual-mode quasi-elliptic-function bandpass filters using ring resonator with enhanced coupling tuning stubs ” IEEE Trans. Microwave theory and techniques., Vol. 50, no. 5, pp. 1345-1345, May 2002.
    [21] J.-H. Lee,S. Pinel,J. Papapolymerou, J. Laskar, and M. M. Tentzeris, “Low-Loss LTCC Cavity Filters Using System-on-Package Technology at 60 GHz, “IEEE Trans. Microw. Theory Tech., vol. 53, no. 12, pp. 3817-3824, Dec. 2005.
    [22] H. K. Kan, R. B. Waterhuse, A. M. Abbosh and M. E. Bialkowski, “Simple broadband planar CPW-fed quasi-Yagi Antenna,” IEEE Antennas and Wireless Propagation Letters, vol. 6, Apr. 2007.
    [23] K. K. Samanta, D. Stephens, and I.D. Robertson, “Design and Performance of a 60-GHz Multi-Chip Module Receiver Employing Substrate Integrated Waveguides,” IET Microw. Antennas Propag., vol.1, no.5, pp. 961-967, Oct. 2007.
    [24] P.-J. Guo, and H.-R. Chuang, “A 60-GHz Millimeter-wave CMOS RFIC-on-chip Meander-line Planar Inverted-F Antenna for WPAN Applications,” IEEE Antennas and Propag. Society, pp. 1-4, July 2008.
    [25] S.-S. Hsu, K.-C. Wei, C.-Y. Hsu, and H.-R. Chuang, “A 60-GHz Millimeter-Wave CPW-Fed Yagi-Antenna Fabricated Using 0.18-μm CMOS Technology,” IEEE Electron Device Lett., vol. 29, no.6, pp. 625-627, June 2008.
    [26] K.-H Tsai, L.-K. Yeh, P.-C. Kuo, and H.-R. Chuang, “Design of 60-GHz CPW-Fed CMOS On-Chip Integrated Antenna-Filter,” European Conference on Antennas and Propagation, pp. 1-3, Apr. 2010.
    [27] H. Chu, Y. X. Guo, F. Lin, X. Q. Shi, “Wideband 60 GHz on-chip antenna with an artificial magnetic conductor,” Proc. IEEE Int. Symp. Radio-Frequency Integration Tech., pp. 307-310, 2009.
    [28] C.-T. Chuang and S.-J. Chung, "New printed filtering antenna with selectivity enhancement," in Proc. 39th Eur. Microw. Conf., Sep. 2009, pp. 747-750.
    [29] Z. Ma and Y. Kobayashi, "Design and realization of bandpass filters using composite resonators to obtain transmission zeros," in Proc. 35th Eur. Microw. Conf., Oct. 2005, pp. 1255-1258.
    [30] M. C. van Beurden, A. B. Smolders, M. E. J. Jeuken, G. H. C. van Werkhoven, and E.W. Kolk, “Analysis of wide-band infinite phased arrays of printed folded dipoles embedded in metallic boxes,” IEEE Trans. Antennas Propagat., vol. 50, pp. 1266–1273, Sept. 2002.
    [31] C. G. Buxton, W. L. Stutzman, R. R. Nealy, and A. M. Orndorff, “The folded dipole:Aself-balancing antenna,” Microwave Opt. Technol. Lett., vol. 29, pp. 155–160, May 2001.
    [32] D. A. McNamara and L. Botha, “On the functioning of folded dipole antennas on conducting masts,” IEEE Trans. Veh. Technol., vol. 42, pp. 393–398, Nov. 1993.
    [33] T. Tanaka, S. Hayashida, H. Morishita, Y. Koyanagi, and K. Fujimoto, “Built-in folded dipole antenna for handsets,” in IEEE Antennas Propagat. Soc. Int. Symp. Dig., vol. 1, 2003, pp. 451–454.
    [34] F. R. Hsiao, K. L. Wong, “Omnidirectional Planar Folded Dipole Antenna,” in IEEE Trans. Antennas Propaga., vol. 52, no. 7, July., 2004.
    [35] K. Araki, A. X. Tanaka and E. Matsumura, “Wide Scanning Phased Array Antenna Design in Ka Band,” IEEE Trans. Antennas Propag., vol. 150, no. 5, Oct., 2003.
    [36] Yikun Yu et al, “A 60 GHz Phase Shifter Integrated With LNA and PA in 65 nm CMOS for Phased Array Systems, “IEEE J. Solid-State Circuits, vol. 45, no. 9, pp. 1697–1709, May. 2010.
    [37] W. Shin, O. Inac, Y.C. Ou, B. Ku, and G. M. Rebeiz, “A 108-112 GHz 4x4 Wafer-Scale Phased Array Transmitter with High-Efficiency On-Chip Antennas,” IEEE J. Solid-State Circuits, vol. 48, no. 9, pp. 2041–2055, Sep. 2013.
    [38] 羅珮華,毫米波CMOS低相位變化之可變增益放大器與類循環器射頻晶片之研製,國立成功大學電腦與通信工程研究所,碩士論文,民國一百零一年七月。
    [39] 呂知穎,毫米波CMOS低變化插入損耗相移器與非對稱型射頻收發開關之研製,國立成功大學電腦與通信工程研究所,碩士論文,民國一百零一年七月。
    [40] Y. Wu, S. –C. Huang, C. –H. Yu, W. –Y. Ruan and H. -R Chuang, “60-GHz CMOS artificial magnetic conductor on-chip 2×2 monopole – antenna phased array RF receiving system with integrated variable-gain low-noise amplifier and phase shifter,” in Proc. IEEE Int. Microw. Symp., Jun 2014, pp. 1–3.

    下載圖示 校內:2019-09-05公開
    校外:2019-09-05公開
    QR CODE