簡易檢索 / 詳目顯示

研究生: 陳臆聰
Chen, Yi-tsung
論文名稱: 24-GHz CMOS壓控振盪器與24-及60-GHz 除頻器之研製
Design of 24-GHz CMOS VCO and 24-/60-GHz Frequency Divider
指導教授: 莊惠如
Chuang, Huey-Ru
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 67
中文關鍵詞: 除頻器壓控振盪器
外文關鍵詞: VCO, ILFD
相關次數: 點閱:81下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研製24-GHz鎖相迴路之壓控振盪器,以及24-及60-GHz寬頻除頻器。論文探討不同架構之壓控振盪器與除頻器的特性,並提出不同電路設計方式來改善電路之效能。
    24-GHz改良式考畢茲壓控振盪器採用TSMC 0.18-μm CMOS製程,從量測結果來看,輸出頻率24.63-25.18 GHz,輸出功率大於-14 dBm,主動埠消耗功率為7.44 mW,相位雜訊在頻率24.6 GHz為-108.4 dBc/Hz@1 MHz,FOM為-188 dBc/Hz。使用基板偏壓之60-GHz寬頻除頻器採用TSMC 0.13-μm CMOS製程,操作電壓0.7 V時,消耗功率為3.93 mW,量測除頻範圍為53-61.68 GHz,最低除頻靈敏度為-28 dBm@58 GHz。除頻後的相位雜訊為-127 dBc/Hz@1 MHz,輸出功率在可除範圍內皆大於-11 dBm,最大輸出功率為-3 dBm。
    24-GHz並聯式除三除頻器採用TSMC 0.18-μm CMOS製程,可降低高頻鎖相迴路的複雜度,操作電壓在0.9 V時消耗功率為8.28 mW,量測除頻範圍為21.7-25 GHz,最低除頻靈敏度量測時為-30 dBm@23.4 GHz。輸入24 GHz除頻後的相位雜訊為-141 dBc/Hz@1 MHz,輸出功率在可除範圍內皆大於-12 dBm,最大輸出功率為-8.2 dBm。而改良除三除頻器之電路佈局並設計V-band除三電路,使電路易於後級除頻器的整合,於V-band除三電路的量測結果方面,操作電壓為0.8 V,消耗功率為4.48 mW,可除頻寬為55.7-56.3 GHz。

    This thesis presents the design of a 24-GHz CMOS VCO and 24-, 60-GHz frequency dividers. A 24 -GHz low-power CMOS modified Colpitts VCO is implemented by TSMC 0.18-μm CMOS process. A V-band frequency divider adopts the direct injection locked structure is implemented by TSMC 0.13-μm CMOS process. The V-band ILFD uses the body biasing to improve the injection ratio which can increase the frequency locking range. A K-band and a V-band frequency divider use parallel injection and are implemented by TSMC 0.18-μm and 0.13-um CMOS process.

    第一章 緒論 1 1.1 24 GHz汽車雷達應用 1 1.2 60-GHz WPAN系統簡介 2 1.3 論文架構簡介 3 第二章 24-GHz低功率改良式考畢茲壓控振盪器 5 2.1 壓控振盪器簡介 5 2.2 設計與製作流程 11 2.3 模擬與量測結果 13 2.4 量測結果討論 17 第三章 60-GHz CMOS寬頻直接注入式鎖定除頻器 19 3.1 CMOS 除頻器架構簡介 19 3.2 注入鎖定除頻器原理 24 3.3 注入鎖定除頻器相位雜訊分析 30 3.4 設計與製作流程 32 3.5 模擬與量測結果 35 3.6 量測結果討論 39 第四章K-band與V-band之並聯式寬頻注入除三除頻器 41 4.1 除三除頻器原理與架構簡介 41 4.2 K-band並聯式除三除頻器設計與製作流程 49 4.3 K-band並聯式除三除頻器模擬與量測結果 52 4.4 K-band並聯式除三除頻器量測結果討論 56 4.5 V-band並聯式除三除頻器設計與製作流程 57 4.6 V-band並聯式除三除頻器模擬與量測結果 58 4.7 V-band並聯式除三除頻器量測結果討論 61 第五章 結論 63 參考文獻 65

    [1]Delphi Corporation, “Consultation paper on the
    introduction of wireless systems using ultra-wideband
    technology,” Industry Canada, May 2005.
    [2]Cheolhee Park and Theodore S. Rappaport, “Short-range
    wireless communications for next-generation networks:
    UWB, 60 GHz millimeter-wave WPAN, and Zigbee,” IEEE
    Wireless Commun., vol. 14, pp. 70-78, Aug. 2007.
    [3]D. Ham and A. Hajimiri, “Concept and Methods in
    Optimization of Integrated LC VCOs,” IEEE J. Solid-
    State Circuits, vol. 36, pp. 896-909, June 2001.
    [4]X.-S. Chen, Y.-T. Chen and H.-R. Chuang, "A 1-V low-
    voltage 12-GHz VCO in 0.18-μm CMOS technology," in
    IEEE Asia-Pacific Microwave Conf., 2008.
    [5]R. Aparicio and A. Hajimiri “A noise-shifting
    differential colpitts VCO,” IEEE J. Solid-State
    circuits,” vol. 37, no. 12, Dec 2002.
    [6]X. Li, S. Shekhar and D.J. Allstot, “Low-power gm-
    boosted LNA and VCO circuits in 0.18 μm CMOS,” IEEE J.
    Solid-State Circuits, vol. 40, no. 12 pp. 2609-2619,
    Dec. 2005.
    [7]H.-H. Hsieh, L.-H. Lu, "A low-phase-noise K-band CMOS
    VCO," IEEE Trans. Microw. Theory Tech., vol.16, no.10,
    pp.552-554, Oct. 2006.
    [8]J.-H., C. Zhan, J. S. Duster and K. T. Kornegay, “A 25-
    GHz emitter degenerated LC VCO,” IEEE J. Solid-State
    Circuits, vol. 39, pp. 2062- 2064, Nov. 2004.
    [9]D. Ozis, N.-M. Neihart, D.-J. Allstot, "Differential
    VCO and passive frequency doubler in 0.18 μm CMOS for
    24 GHz applications," in IEEE Radio Frequency
    Integrated Circuit Conf., pp.11-13, June 2006.
    [10]C.-H. Chiu, K.-H. Liang, H.-Y. Chang and Y.-J. Chan,
    “A low phase noise 26-GHz push-push VCO with a wide
    tuning range in 0.18-μm CMOS technology,” in IEEE
    Asia-Pacific Microwave Conf., pp. 1128-1131, Dec. 2006.
    [11]C.-C. Li, T.-P. Wang, C.-C. Kuo, M.-C. Chuang, H.
    Wang, "A 21 GHz Complementary Transformer Coupled CMOS
    VCO," IEEE Trans. Microw. Theory Tech., vol.18, no.4,
    pp.278-280, April 2008.
    [12]T.-N. Luo and Y.-J. E. Chen, "A 0.8-mW 55-GHz Dual-
    Injection-Locked CMOS Frequency Divider," IEEE Trans.
    Microw. Theory Tech., vol.56, no.3, pp.620-625, March
    2008.
    [13]J. Lee and B. Razavi, “A 40-GHz frequency divider in
    0.18-μm CMOS technology,” IEEE J. Solid-State
    Circuits, vol.39, no.40, pp. 594-601, Apr. 2004.
    [14]H.-R. Rategh, T.-H. Lee, "Superharmonic injection-
    locked frequency dividers," IEEE J. Solid-State
    Circuits, vol.34, no.6, pp.813-821, June 1999.
    [15]W. Hui; A. Hajimiri, "A 19 GHz 0.5 mW 0.35 μm CMOS
    frequency divider with shunt-peaking locking-range
    enhancement," in IEEE Int. Solid-State Circuits Conf.
    Tech. Dig., pp.412-413, 471, 2001.
    [16]M. Tiebout, "A CMOS direct injection-locked oscillator
    topology as high-frequency low-power frequency
    divider," IEEE J. Solid-State Circuits, vol.39, no.7,
    pp. 1170-1174, July 2004.
    [17]K. Yamamoto, M. Fujishima, , "55GHz CMOS frequency
    divider with 3.2GHz locking range," in IEEE European
    Solid-State Circuits Conf., pp. 135-138, Sept. 2004.
    [18]Y.-H. Wong, W.-H. Lin, J.-H. Tsai, and T.-W. Huang, "A
    50-to-62GHz wide-locking-range CMOS injection-locked
    frequency divider with transformer feedback," in IEEE
    Radio Frequency Integrated Circuit Conf., pp.435-438,
    Apr. 2008.
    [19]C.-Y. Wu, and C.-Y. Yu, "Design and Analysis of a
    Millimeter-Wave Direct Injection-Locked Frequency
    Divider With Large Frequency Locking Range," IEEE
    Trans. Microw. Theory Tech., vol.55, no.8, pp.1649-
    1658, Aug. 2007.
    [20]A. Mazzanti, P. Uggetti, and F. Svelto, “Analysis and
    design of injection-locked LC dividers for quadrature
    generation,” IEEE J. Solid-State Circuits, vol. 39,
    no. 9, pp. 1425–1433, Sep. 2004.
    [21]Y.-J.E. Chen, S.-Y. Bai, T.-N. Luo, Y.-H. Yu, D. Heo,
    “A Wide Operation Range CMOS Frequency Divider for
    60GHz Dual-Conversion Receiver,” in IEEE Radio
    Frequency Integrated Circuit Conf., Jun. 2006.
    [22]S.-H Wen, J.-W. Huang, C.-S. Wang and C.-K. Wang, “A
    60GHz Wide Locking Range CMOS Frequency Divider using
    Power Matching Technique,” in IEEE Asian Solid-State
    Circuits Conf., pp. 187-190, Nov. 2006.
    [23]Q. Gu and M-C Frank Chang, “A Wide Locking Range and
    Low Power V-Band Frequency Divider in 90 nm CMOS,” in
    VLSI Circuits Symp., pp. 266-267, Jun. 2007.
    [24]M. Motoyoshi, M. Fujishima, "43μW 6GHz CMOS Divide-by-
    3 Frequency Divider Based on Three-Phase Harmonic
    Injection Locking," in IEEE Asian Solid-State Circuits
    Conf., pp.183-186, Nov. 2006.
    [25]T.-N. Luo, S.-Y. Bai, Y.-J.E. Chen, "A 60-GHz 0.13-μm
    CMOS Divide-by-Three Frequency Divider," IEEE Trans.
    Microw. Theory Tech., vol.56, no.11, pp.2409-2415,
    Nov. 2008.
    [26]H. Wu, L. Zhang, "A 16-to-18GHz 0.18-um Epi-CMOS
    Divide-by-3 Injection-Locked Frequency Divider," in
    IEEE Int. Solid-State Circuits Conf. Tech. Dig.,
    pp.2482-2491, Feb. 2006.
    [27]S.-L. Jang, C.-W. Chang, W.-C. Cheng, C.-F. Lee, M.-H.
    Juang, "Low-power divide-by-3 injection-locked
    frequency dividers implemented with injection
    transformers," Electronics Letters, vol.45, no.5,
    pp.240-241, Feb. 2009.
    [28]S. Rong, H.-C. Luong, "A 1V 1.7mW 25GHz transformer-
    feedback divide-by-3 frequency divider with quadrature
    outputs," in IEEE Asian Solid-State Circuits Conf.,
    pp.328-331, Nov. 2007.

    下載圖示 校內:2010-08-20公開
    校外:2010-08-20公開
    QR CODE