簡易檢索 / 詳目顯示

研究生: 何文翔
Ho, Wen-Hsiang
論文名稱: 氯離子對於銅在MPS修飾之金(111)電極上電化學沉積效應的研究
Electrochemical Copper Deposition on MPS-modified Au(111) Electrodes at the Presence of Chloride
指導教授: 李玉郎
Lee, Yuh-Lang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 104
中文關鍵詞: 自組裝單分子膜掃描式穿隧電子顯微鏡電化學鍍銅
外文關鍵詞: Self-assembly monolayer, scanning tunneling microscopy, electrochemical copper deposition
相關次數: 點閱:107下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究藉由循環伏安法(cyclic voltammetry, CV)分析MPS單分子膜在電極表面的電化學行為,並利用電化學式掃描電子穿隧顯微鏡(electrochemical scanning tunneling microscopy, EC-STM),觀察其吸附結構,並即時記錄MPS於金(111)載體表面的脫附行為。實驗結果顯示,MPS單分子膜穩定存在於電雙層的電位區間為0.11V~0.8V。在電位比0.11V正時,MPS單分子膜會行氧化吸附反應,而電位比0.06V負時,MPS單分子膜會行還原脫附反應。由EC-STM更發現,MPS單分子膜在0.8V~0.6V電位區間具有二維規則結構,其規則結構為(√21 × 2√19)。
    由循環伏安法分析,經過MPS單分子膜修飾後的金(111)電極,改變銅低電位沉積的現象由典型蜂巢結構(√3 × √3)轉變為(1 × 1)結構相轉移峰消失,顯示MPS能夠改變銅沉積於金(111)的型態,且銅沉積量減少20%,表示MPS的存在對銅沉積呈現抑制的作用。由EC-STM觀察,金(111)電極經過MPS分子修飾後,於0.6V時銅的UPD行為以零星島狀物方式呈現。同時出現具有(4 × √13)規則結構的MPS單分子膜。此單分子膜的存在抑制銅沉積,使銅覆蓋率由0.33ML降低至0.1ML。而當電鍍液中含有氯離子時,銅的UPD電位由0.6V往正電位偏移至0.68V,且成長模式變為二維方向的層狀沉積方式。此外,由於氯離子與MPS共存,MPS單分子膜形成有別於(4 × √13)的霧狀不規則結構。In-situ STM更指出,僅有霧狀分子膜存在的區域能觀察到銅島狀物沉積。因此MPS單分子膜改變銅沉積型態與抑制銅沉積的作用,可由CV及STM得到證實。

    Copper deposition on Au(111) electrodes in aqueous sulfuric acid solution is an important model system which has been extensively studied. To improve the quality of electrodeposited films, additives, such as 3-Mercapto-1-propansulfonic acid (MPS) and chloride ions, are commonly employed in industrial plating bathes. Electrochemical scanning tunneling microscopy (EC-STM) and cyclic voltammetry (CV) were used to study the adsorption of MPS on Au(111) electrodes and the behavior of MPS desorption. STM images revealed an ordered (√21 毕 2√19) MPS adlayer at potentials >0.6V and a disordered phase at more cathodic potentials. Measurements revealed that MPS monolayer is stable in the electric double-layer at the potential between 0.11V to 0.8V.
    In Cu containing electrolytes, cathodic peak of Cu underpotential deposition (UPD), corresponding to (√3 毕 √3) transferred to (1 毕 1) is disappeared. In analog STM experiments, the MPS adlayer is (4 × √13) ordered structure in the position where no Cu deposition takes place.
    An additional amount of 1.4 mM chloride ions strongly affects the growth behavior of Cu UPD. Cu islands deposit in the region with the 库 phase. A two-dimensional growth of monoatomic height Cu islands forms the Cu UPD layer. Coalescence of the islands at the higher coverage results in a connected layer with fractal shape.

    Keywords: Self-assembly monolayer, scanning tunneling microscopy, electrochemical copper deposition

    第1章 緒論 1 1.1 前言 1 1.2 研究動機與目的 3 第2章 文獻回顧 4 2.1 自組裝單分子膜 (SELF-ASSEMBLED MONOLAYERS, SAMS)的介紹 4 2.1.1 自組裝單分子膜系統的發展及起源 4 2.1.2 自組裝單分子膜系統的分類 5 2.1.3 自組裝現象及其應用 8 2.2 銅製程技術簡介 10 2.2.1 電鍍銅填充盲孔之技術發展 10 2.2.2 電鍍銅添加劑的種類及其作用原理 14 2.2.3 低電位沉積(UPD)文獻回顧 21 2.2.4 自組裝分子膜技術應用於電化學鍍銅 29 第3章 實驗部份 31 3.1 氣體及耗材 31 3.2 藥品 31 3.3 儀器設備 32 3.3.1 循環伏安儀 (Cyclic Voltammogram, CV) 32 3.3.2 掃描式電子穿隧顯微鏡(Scanning Tunneling Microscopy, STM) 35 3.4 實驗步驟 45 3.4.1 操作STM 的前處理 45 3.4.2 操作循環伏安儀的前處理 49 3.4.3 MPS自組裝單分子膜的製備與鍍銅效應實驗程序 49 第4章 結果與討論 50 4.1 金(111)電極的重排現象 50 4.1.1 金(111)電極在0.1 M硫酸中之循環伏安圖 50 4.1.2 STM觀察金(111)電極的重排現象 52 4.2 MPS自組裝單分子膜於金(111)上之電性與結構的探討 55 4.2.1 循環伏安法分析MPS單分子膜的電化學特性 55 4.2.2 STM觀察MPS單分子膜於金(111)電極的吸附行為 62 4.3 MPS單分子膜於金(111)上之電化學鍍銅效應的探討 68 4.3.1 循環伏安法分析銅於金(111)表面之沉積行為 68 4.3.2 STM觀察電化學鍍銅於金(111)電極 73 4.3.3 循環伏安法分析電化學鍍銅效應於MPS修飾後金(111)電極 76 4.3.4 STM觀察電化學鍍銅於MPS修飾後金(111)電極 80 4.3.5 STM觀察銅離子濃度對電化學鍍銅於MPS修飾後 金(111)電極的影響 85 4.4 氯離子對電化學鍍銅於MPS修飾金(111)電極上的影響 90 4.4.1 循環伏安法分析氯離子對電化學鍍銅於MPS修飾金(111)電極上的影響 90 4.4.2 STM觀察氯離子對電化學鍍銅於MPS修飾後金(111)電極上的影響 97 4.4.3 STM觀察銅離子濃度及氯離子對電化學鍍銅於MPS修飾後金(111)電極的影響 104 第5章 結論 110 5.1 MPS自組裝單分子膜於金(111)上電性與結構的探討 110 5.2 電化學鍍銅於MPS修飾後金(111)電極上的探討 110 5.3 氯離子對電化學鍍銅於MPS修飾後金(111)電極的影響 111 第6章 參考文獻 112

    1. Bigelow W.C., Pickett D.L., and Zisman W.A., "Oleophobic Monolayers : I. Films Adsorbed From Solution in Non-polar Liquids." Journal of Colloid Science, 1, 513 (1946)
    2. Kuhn H., Ulman A., Thin Films, Academic Press, New York, (1995).
    3. Nuzzo R.G., and Allara D.L., "Adsorption of Bifunctional Organic Disulfides on Gold Surfaces," Journal of the American Chemical Society, 105, 4481 (1983)
    4. Yang G.H., and Liu G.Y., "New Insights for Self-Assembled Monolayers of Organothiols on Au(111) Revealed by Scanning Tunneling Microscopy.", Journal of Physic Chemistry B, 107, 8746 (2003)
    5. Biebuyck H.A., and Whitesides G.M., "Interchange between Monolayers on Gold Formed from Unsymmetrical Disulfides and Solutions of Thiols: Evidence for Sulfur-Sulfur Bond Cleavage by Gold Metal.", Langmuir, 9, 1766 (1993).
    6. Biebuyck H.A., Bain C.D., and Whitesides G.M., "Comparison of Organic Monolayers on Polycrystalline Gold Spontaneously Assembled from Solutions Containing Dialkyl Disulfides or Alkanethiols.", Langmuir, 10, 1825 (1994).
    7. Ulman, A., "Formation and Structure of Self-Assembled Monolayers.", Journal of American Chemical Society, 96, 1533 (1996).
    8. Sellers H., Ulman A., Shnidman Y., and Eilers J.E., "Structure and Binding of Alkanethiolates on Gold and Silver Surfaces: Implications for Self-Assembled Monolayers.", Journal of the American Chemical Society, 115, 9389 (1993).
    9. Love J.C., Estroff L.A., Kriebel J.K., Nuzzo R.G., and Whitesides G.M., "Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology.", Journal of the American Chemical Society, 105, 1103 (2005).

    10. Nuzzo, R.G., Zegarski, B.R., Dubois, L.H.J. "Fundamental studies of the chemisorption of organosulfur compounds on gold(111). Implications for molecular self-assembly on gold surfaces.", Journal of American Chemical Society, 109, 733(1987)
    11. C. Andricacos, C. Uzoh, J. O. Dukovic, J. Horkans and H. Deligianni "Damascene Copper Electroplating for Chip Interconnections." IBM Journal of Research and Development, 42, 567(1998).
    12. Soukane S., Sen S., Caleb T.S., "Feature Superfilling in Copper Electrochemical Deposition.", Journal of The Electrochemical Society, 149, C74 (2002).
    13. Nagy Z., Blaudeau J.P., Hung N.C., Curtiss L.A., and Zurawski D.J., "Chloride Ion Catalysis of the Copper Deposition Reaction.", Journal of The Electrochemical Society, 142, L87 (1995).
    14. Dow W.P., Huang H.S., Yen M.Y., and Chen H.H., "Roles of Chloride Ion in Microvia Filling by Copper Electrodeposition II. Studies Using EPR and Galvanostatic Measurements.", Journal of The Electrochemical Society, 152, C77 (2005).
    15. G.M. Brown, and G.A. Hope, "A SERS study of SO42-/Cl- Ion Adsorption at a Copper Electrode In Situ." , Journal of Electroanalytical Chemistry, 405, 211(1996).
    16. Zukauskaite, N., Malinauskas, A., "Electrocatalysis by a Brightener in Copper Electrodeposition.", Journal of Soviet Electrochemistry, 24,1564(1989).
    17. John P. Healya, Derek Pletchera and Mark Goodenough, "The chemistry of the additives in an acid copper electroplating bath: Part II. The instability 4,5-dithiaoctane-1,8-disulphonic acid in the bath on open circuit.", Journal of Electroanalytical Chemistry, 338, 167(1992).
    18. Mattsson, E. and J. Bockris, O’M., "Galvanostatic studies of the kinetics of deposition and dissolution in the copper + copper sulphate system.", Transactions of the Faraday Society, 55, 1586(1959).

    19. Dow W.P. and Chiu Y.D., and Yen M.Y., "Microvia Filling by Cu Electroplating Over a Au Seed Layer Modified by a Disulfide.", Journal of The Electrochemical Society, 156, D155 (2009).
    20. Feng Z.V., Li X., Gewirth A.A., "Inhibition Due to the Interaction of Polyethylene Glycol, Chloride, and Copper in Plating Baths: A Surface-Enhanced Raman Study.", Journal of Physical Chemistry B, 107, 9415 (2003).
    21. James J. Kellyaa and Alan C. West, "Leveling of 200 nm Featires by Organic Additives.", Electrochemical and Solid-State Letters, 11, 561(1999).
    22. Li Y.B., Wang W., and Li Y.L., "Adsorption Behavior and Related Mechanism of Janus Green B during Copper Via-Filling Process.", Journal of The Electrochemical Society, 156, D119 (2009)
    23. Kimizuka, N., Itaya, K., "In-situ Scanning Tunneling Microscopy of Underpotential Deposition Silver Analysis on Pt(111) in Sulfuric-Acid-Solution.", Faraday Discuss, 94, 117 (1992)
    24. S. Wu, J. Lipkowski, T. Tyliszczak and A. P. Hitchcock, "Effect of anion adsorption on early stages of copper electrocrystallization at Au(111) surface.", Progress in Surface Science, 50, 227(1995)
    25. Shi Z., Wu S. and Lipkowski J., "Coadsorption of Metal Atoms and Anions in the presence of SO42-, Cl-and Br-.", Electrochimica Acta, 40, 9 (1995)
    26. Jung D.R. and Czanderna A.W., "Chemical and Physical Interactions at Metal/Self-Assembled Organic Monolayer Interfaces", Critical Reviews in Solid State and Materials Sciences, 19, 1 (1994).
    27. Schneeweiss M.A. and Kolb D.M., "The Initial Stages of Copper Deposition on Bare and Chemically Modified Gold Electrodes", Physica Status Solidi (A), 173, 51 (1999)
    28. Kolb D.M., Petri M., Memmert U., and Meyer H., "Adsorption of Mercaptopropionic Acid onto Au(111) Part II. Effect on Copper Electrodeposition", Electrochimica Acta, 49, 183 (2003).
    29. James J. Kellyaa and Alan C. Westb, "Leveling of 200 nm Features by Organic Additives." Electrochemical and Solid-State Letters, 2, 561(1999)
    30. Moffat T.P., Wheeler D., Kim S.K., and Josell D., "Curvature enhanced adsorbate coverage mechanism for bottom-up superfilling and bump control in damascene processing", Electrochim. Acta, 53, 145 (2007).
    31. M. Lefebvre, G. Allardyce, M. Seita, H. Tsuchida, M. Kusaka, S. Hayashi, "Copper electroplating technology for microvia filling." Circuit World, 29, 2, 9(2003)
    32. R. Tenno and A. Pohjoranta, "An ALE Model for Prediction and Control of the Microvia Fill Process with Two Additives.", Journal of The Electrochemical Society, 155, 5, D383 (2008)
    33. W. P. Dow, M. Y. Yen, S. Z. Liao, Y. D. Chiu, and H. C. Huang, "Filling mechanism in microvia metallization by copper electroplating. ", Electrochim. Acta , 53, 8228(2008)
    34. H. Angerstein-Kozlowska, B.E Conway A. Hamelin and L. Stoicoviciu, "Elementary Steps of Electrochemical Oxidation of Single-crystal Planes of Au Part II. A Chemical and Structural Basis of Oxidation of the (111) Plane.", Journal of Electroanalytical Chemistry, 228, 429(1987).
    35. H. Angerstein-Kozlowska, B.E Conway A. Hamelin and L. Stoicoviciu, "Elementary Steps of Electrochemical Oxidation of Single-crystal Planes of Au-I. Chemical Basis of Processes Involving Geometry of Anions and the Electrode Surfaces.", Electrochimica Acta, 31, 8 (1986).
    36. Gabriele Hagera and Alexandre G Brolo, "Adsorption/desorption behaviour of cysteine and cystine in neutral and basic media: electrochemical evidence for differing thiol and disulfide adsorption to a Au(111) single crystal electrode.", Journal of Electroanalytical Chemistry, 550-551, 291(2003).
    37. Guangli Che, A. Manivannan and Carlos R. Cabrera, "Electrochemically controlled microstructure based on self-assembled thin film of (3-mercaptopropyl) trimethoxysilane at gold electrodes and STM characterization." Physica A, 231, 304(1996)

    38. Takahiro Sawaguchi, Yukari Sato and Fumio Mizutani, "Ordered structures of self-assembled monolayers of 3-mercaptopropionicacid on Au(111): in situ scanning tunneling microscopy study.", Physical Chemistry Chemical Physics, 3, 3399(2001)
    39. Taubert, C. E.; Kolb, D. M.; Memmert, U.; Meyer, H., "Adsorption of the Additives MPA, MPSA, and SPS onto Cu(111) from Sulfuric Acid Solutions." Journal of The Electrochemical Society, 154, 6, D293(2007).
    40. Z.Y. Jian, T.Y. Chang, Y.C. Yang, W.P. Dow, S.L. Yau and Y.L Lee, "3-Mercapto-1-propanesulfonic acid and Bis(3-sulfopropyl) Disulfide Adsorbed on Au(111): In Situ Scanning Tunneling Microscopy and Electrochemical Studies."Langmuir, 25, 1, 179(2009).
    41. Munakta, H., Oyamatsu, D., and Kuwabata, S., "Effects of ω-Functional Groups on pH-Dependent Reductive Desorption of Alkanethiol Self-Assembled Monolayers.", Langmuir, 20, 10123 (2004).
    42. 張騰元,"MPS及SPS自組裝分子膜在Au(111)電極上的吸附及其對電化學鍍銅效應的研究",國立成功大學化工系碩士論文,民國96年。
    43. A. Kudelski, "Structures of monolayers formed from different HS—(CH2)2—X thiols on gold, silver and copper: comparitive studies by surface-enhanced Raman scattering.", Journal of Raman Spectroscopy, 34, 853(2003).
    44. Friebel, D., Broekmann, P. and Wandelt, K., "Electrochemical in situ STM study of a Cu(111) electrode in neutral sulfate containing electrolyte.", Physica Status Solidi (A), 201, 5, 861(2004).
    45. W. Shao, G. Pattanaik, and G. Zangari, "Influence of Chloride Anions on the Mechanism of Copper Electrodeposition from Acidic Sulfate Electrolytes." Journal of The Electrochemical Society, 154, 4, D201(2007).
    46. S. Wu, Z. Shi, J. Lipkowski, A. P. Hitchcock and T. Tyliszczak, "Early Stages of Copper Electrocrystallization: Electrochemical and in Situ X-ray Absorption Fine Structure Studies of Coadsorption of Copper and Chloride at the Au(111) Electrode Surface." The Journal of Physical Chemistry B, 101, 49, 10310(1997).
    47. D. Krznaric’ and T. Goricˇnik, "Reactions of Copper on the Au(111) Surface in the Underpotential Deposition Region from Chloride Solutions. " Langmuir, 17, 4347(2001).
    48. T. P. Moffat and L.-Y. Ou Yang, "Accelerator Surface Phase Associated with Superconformal Cu Electrodeposition.", Journal of The Electrochemical Society, 157, 4, D228(2010).

    下載圖示 校內:2013-09-05公開
    校外:2013-09-05公開
    QR CODE