| 研究生: |
張博維 Chang, Po-Wei |
|---|---|
| 論文名稱: |
50公尺水深張緊式浮動風機繫泊系統之敏感度分析 Sensitivity Analysis of Mooring Tensioning Systems of FOWT in 50 m Water Depth |
| 指導教授: |
楊瑞源
Yang, Ray-Yeng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | TLB 、TLP 、影響因子 、FLOW-3D 、水工試驗 、纜繩鬆弛 |
| 外文關鍵詞: | tensioning platform, TLB, TLP, pretension, slack |
| 相關次數: | 點閱:98 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著離岸風場近年於台灣的開發,發展離岸風力發電已經勢在必行,而在風能潛勢最為良好之新竹區域水深約為50 公尺,使用浮動風機擁有較高的經濟效益,於是梁等人設計出一種可調式張緊平台,其使用張緊繫泊作為纜繩形式,但因張緊式浮動風機的研發處於較為初始的階段,故針對張力腿浮標(Taught Leg Buoy, TLB)及張力腿式平台(Tension Leg Platform, TLP)兩種纜繩形式進行外在條件的敏感度分析,初步比較波浪週期、波譜能量與風推力對於張緊平台運動及纜繩張力之影響程度,並且以影響因子IF (Impact Factor)為敏感度之評估方法,選擇較不受外在條件影響之纜繩形式作為後續分析的依據。
對於浮動風機平台而言,波浪及風為主要對平台之外力條件。本文使用可調式平台上部搭載NREL 5MW 風機,並且以兩種不同的張緊纜繩形式,透過數值軟體FLOW-3D 模擬規則波不同週期的情形下,張緊平台之反應振幅運算子(RAO),並以RAO 衡量波浪週期對於張緊平台的運動變化。而後續使用不規則波模擬張緊平台遭受不同海況條件下的運動響應,透過規則波與不規則波的數值模擬得到張緊平台對於波浪週期與波譜能量下之敏感程度。本文同時進行了1:64 張緊浮動風機平台縮尺水工試驗,進行數值與實驗的驗證,並且上部風機以無人機葉片進行風推力模擬,衡量風推力對於張緊平台之影響。
透過影響因子的分析,得到兩種張緊纜繩形式對於外在條件的敏感度,選用相對較不敏感的張緊纜繩形式進行極端海況下之可行性分析,並以張緊平台初步之規範,進行平台運動與張力的評估,發現纜繩出現鬆弛並且有瞬荷載(snap load)的發生,故以增加平台浮力方式進行優化,有效的避免了鬆弛現象的發生,並且確認纜繩沒有發生降伏的情況,初步判定其為一種可行之纜繩配置。
In Hsinchu, where the wind energy potential is the best in western Taiwan offshore water area, the water depth is about 50 to 100 meters, so Liang et al.(2020) proposed a patent of a tensioning platform concept to place in offshore water area in Taiwan. The objective of this research is to find the most suitable tensioning form to give this platform enough stability and evaluate whether this mooring system could resist extreme sea conditions.
In this research, the NREL 5MW wind turbine was installed on the top of platform. The test objects included free decay, regular wave and irregular wave by consideration of Hsinchu in numerical simulation. The hydraulic model test at 1/64 scale was also carried out to verify the correction of numerical simulation. Meanwhile, an onboard fan was used to simulate the wind thrust.
By using the numerical software FLOW-3D and the experiment, the obtained result shows that no matter numerical or experiment can find Tension Leg Platform (TLP) has a peak value in half of the natural period and the effect of wind is found to have less contribution than that of wave.
Furthermore, this research used impact factor as an evaluation method for comparing Taught Leg Buoy (TLB) with TLP and chose a mooring form that was less affected by external conditions as the basis for subsequent analysis. For the initial design of platform, the result can be found that the slack phenomenon will be happened because of the insufficient pretension. Therefore, it is optimized by increasing the buoyancy of the platform to make sure passing preliminary specifications for tensioning mooring. Thus, an optimization mooring system was proposed in this research.
[1] Agency, I. E. (2017). World Energy Statistics 2017.
[2] Al-Solihat, M. K., & Nahon, M. (2016). Stiffness of slack and taut moorings. Ships and Offshore Structures, 11(8), 890-904.
[3] Bachynski, E. E. (2014). Design and dynamic analysis of tension leg platform wind turbines.
[4] Brown, M. J., Davidson, C., Cerfontaine, B., Ciantia, M., Knappett, J., & Brennan, A. (2020). Developing screw piles for offshore renewable energy application. In Advances in Offshore Geotechnics (pp. 101-119): Springer.
[5] Butterfield, S., Musial, W., Jonkman, J., & Sclavounos, P. (2007). Engineering challenges for floating offshore wind turbines. Retrieved from
[6] Chakrabarti, S. (2005). Handbook of Offshore Engineering (2-volume set): Elsevier.
[7] Chuang, T.-C., Yang, W.-H., & Yang, R.-Y. (2021). Experimental and numerical study of a barge-type FOWT platform under wind and wave load. Ocean Engineering, 230, 109015.
[8] COREWIND. (2019). Design basis of COREWIND project. Retrieved from
[9] Demirbilek, Z. (1990). Design formulae for offset, set down and tether loads of a tension leg platform (TLP). Ocean Engineering, 17(5), 517-523.
[10] DNV, G. (2018). Floating Wind Turbine Structures: Standard DNVGL-ST-0119, July ed. DNV GL AS.
[11] Haslum, H. A. (2000). Simplified methods applied to nonlinear motion of spar platforms.
[12] Jain, A. (1997). Nonlinear coupled response of offshore tension leg platforms to regular wave forces. Ocean Engineering, 24(7), 577-592.
[13] Jonkman, J., Butterfield, S., Musial, W., & Scott, G. (2009). Definition of a 5-MW reference wind turbine for offshore system development. Retrieved from
[14] Lee, K. H. (2005). Responses of floating wind turbines to wind and wave excitation. Massachusetts Institute of Technology,
[15] Lundteigen, M. A., & Rausand, M. (2008). Spurious activation of safety instrumented systems in the oil and gas industry: Basic concepts and formulas. Reliability Engineering & System Safety, 93(8), 1208-1217. doi:https://doi.org/10.1016/j.ress.2007.07.004
[16] Matha, D. (2010). Model development and loads analysis of an offshore wind turbine on a tension leg platform with a comparison to other floating turbine concepts: April 2009. Retrieved from
[17] Mekha, B. B., Johnson, C. P., & Roesset, J. M. (1996). Implications of tendon modeling on nonlinear response of TLP. Journal of Structural Engineering, 122(2), 142-149.
[18] Moan, T. (1994). Design of marine structures, Vol. 1. In: Norwegian University of Science and Technology, Trondheim, Norway.
[19] Nihei, Y., & Fujioka, H. (2010). Motion characteristics of TLP type offshore wind turbine in waves and wind. Paper presented at the International Conference on Offshore Mechanics and Arctic Engineering.
[20] NREL. Retrieved from https://www.nrel.gov/
[21] Offshore, C. (2014). Global Wind Speed Rankings. Retrieved from http://www.4coffshore.com/windfarms/windspeeds.aspx
[22] Ou, S.-H. (1977). Parametric determination of wave statistics and wave spectrum of gravity waves. Tainan Hydraulics Laboratory of Water Resources Planning Commission-Ministry …,
[23] Park, S., Lackner, M. A., Pourazarm, P., Rodríguez Tsouroukdissian, A., & Cross‐ Whiter, J. (2019). An investigation on the impacts of passive and semiactive structural control on a fixed bottom and a floating offshore wind turbine. Wind Energy, 22(11), 1451-1471.
[24] Robertson, A., Jonkman, J., Wendt, F., Goupee, A., & Dagher, H. (2016). Definition of the OC5 DeepCwind semisubmersible floating system. Technical report.
[25] Rodriguez Tsouroukdissian, A., Fisas, A., & Sclavounos, P. (2011). Floating Offshore Wind Turbines: ALSTOM-MIT Concept Analysis.
[26] RP, A. (2010). Planning, designing, and constructing tension leg platforms.
[27] Sclavounos, P., Tracy, C., & Lee, S. (2008). Floating offshore wind turbines: Responses in a seastate pareto optimal designs and economic assessment. Paper presented at the International Conference on Offshore Mechanics and Arctic Engineering.
[28] Sclavounos, P. D., Lee, S., DiPietro, J., Potenza, G., Caramuscio, P., & De Michele, G. (2010). Floating offshore wind turbines: tension leg platform and taught leg buoy concepts supporting 3-5 MW wind turbines. Paper presented at the European wind energy conference EWEC.
[29] Tian, X. (2016). Design, Numerical Modelling and Analysis of TLP Floater Supporting the DTU 10MW Wind Turbine. NTNU,
[30] Veritas, D. N. (2008). Offshore Standard—Position Mooring. DNV OS-E301.
[31] Vittori, F. E. (2015). Design and Analysis of Semi-Submersible Floating Wind Turbines with Focus on Structural Response Reduction. NTNU,
[32] Wayman, E. N., Sclavounos, P., Butterfield, S., Jonkman, J., & Musial, W. (2006). Coupled dynamic modeling of floating wind turbine systems. Paper presented at the Offshore technology conference.
[33] 王宾. (2017). 考虑下沉运动的张力腿平台非线性随机耦合动力响应分析. 天津大学,
[34] 王猛. (2017). 深水TLP 水动力及系泊敏感性分析. 大连海事大学,
[35] 呂學信, 楊敏雄, & 邱冠融. (2012). 懸垂理論在錨碇系統之應用實例分析.
[36] 郭一羽, & 許泰文. (2001). 海岸工程學. In: 文山書局.
[37] 郭金棟. (1995). 海岸工程: 中國水利工程學會.
[38] 楊雯媗. (2020). 駁船式浮動風機平台水動力及穩定性之實驗與數值分析.
[39] 趙偉廷, & 楊智傑. (2020). 台灣離岸風場於極端氣候條件下之極端波浪特性探討.
[40] 簡仲璟, & 郭一羽. (1993). 近岸波浪頻譜形狀與其非線性研究.