簡易檢索 / 詳目顯示

研究生: 江致劼
Chiang, Chih-Chieh
論文名稱: 艾瑞方程式的雙線性估計和臨界非線性克萊茵-戈登方程式的漸進完備性
Bilinear Estimate for Airy Equation and Asymptotic Completeness for the Critical Nonlinear Klein-Gordon Equation
指導教授: 方永富
Fang, Yung-Fu
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 52
中文關鍵詞: 艾瑞方程式雙線性局部平滑估計克萊茵-戈登方程式全域存在性漸進完備性
外文關鍵詞: Airy equation, bilinear local smoothing estimate, Klein-Gordon equa- tionl, global existence, asymptotic completeness
相關次數: 點閱:70下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本報告為我們對作者Soonsik Kwon和Tristan Roy於二零一一年發表的論文〈Bilinear Local Smoothing Estimate for Airy Equation〉以及作者Hans Lindblad 和 Avy Soffer於二零零五年時發表的論文〈A Remark on Asymptotic Completeness for the Critical Nonlinear Klein-Gordon Equation〉所作之補充證解。我們詳細論述闡明他們的想法和概念,使之更加清晰明白。
      在第一章,我們介紹兩篇論文的研究動機、主要工作及我們有興趣的原因,也提供了我們對這兩篇論文的修改及其補充。在第二章,我們給了一些預備知識,包含了證明中所需要的定理和引理,以及對常用到的符號加以定義。在第三章,我們將定理1.2的證明流程做了詳細說明,並補充了作者省略的證明細節,我們也修改了作者提供的定理1.2的例子。在第四章,我們先介紹Paley-Littlewood decomposition,再詳細補充作者證明Corollary 1.3的每一個步驟。在第五章,我們分成三個小節。首先,我們給予linear Klein-Gordon equation的漸進行為的證明,這是作者略過的部分。其次,我們詳細解說[L5]中第二節的內容。最後,我們對[L5]中第三節的編排做了些修正,並補充了作者略過的引理證明。在第六章,我們重新編排[L5]中第四節的敘述,並試著將[L5]的完整流程解釋清楚。
      誠希望本報告能幫助其他讀者充分且簡易地了解兩篇論文的內涵。

    The report is mainly our supplementary proofs and explanation of central purposes of Soonsik Kwon and Tristan Roy's paper, emph{Bilinear Local Smoothing Estimate for Airy Equation} which was issued on 2011 and Hans Lindblad and Avy Soffer’s paper, emph{A Remark on Asymptotic Completeness for the Critical Nonlinear Klein-Gordon Equation} which was issued on 2005. We also added some details in order to elaborate the authors' ideas clearer.
    In Section 1, we will introduce the papers' motives of studying, main purposes, the reason of why we are interested, and also provided our correction and supplement of the two papers. In Section 2, we will give some preliminaries including propositions and lemmas which are necessary for proofing and also definitions in some common signs. In Section 3, we will explain the proofing processes of Theorem 1.2 thoroughly and supplemented the proofing details omitted by the authors, we also edited the examples given in Theorem 1.2. In Section 4, we will first introduce Littlewood-Paley decomposition, and then is supplement to the proof of Corollary 1.3 by giving every steps. In Section 5, we will separate the section into three parts. Firstly, we will give the proof of linear Klein-Gordon equation's asymptotic behavior. Secondly, it will be the detailed explanation of Section 2 in [L5]. Thirdly, we will do some correction on the arrangement of section 3 in [L5], and will also complete the skipped proof of lemmas. In Section 6, we will rearrange Section 4 in [L5], and try to make the complete process of [L5] be clearly explained.
    Furthermore, we hope that it can help others who will study these two papers to understand and get their connotation easier.

    1 Introduction . . .1 1.1 Bilinear Local Smoothing Estimate for Airy Equation . . . 1 1.2 A Remark on Asymptotic Completeness for the Critical Nonlinear Klein-Gordon Equation . . . 3 1.3 The Processes of Sections and Our Works . . . 5 2 Preliminaries . . . 7 2.1 Notation and De nition . . . 7 2.2 Some Basic Propositions . . . 8 3 An Improved Version of Bilinear Local Smoothing Estimate: Proof ofTheorem 1.2 . . . 11 3.1 Some Propositions and Example of Theorem 1.2 . . . 11 3.2 Proof of Theorem 1.2 . . . 15 4 The Smoothing Property of Bilinear form: Proof of Corollary 1.3 . . . 21 4.1 Littlewood-Paley Decomposition . . . 21 4.2 Proof of Corollary 1.3 . . . 22 5 L2 Estimate and L1 Estimate for the Critical Nonlinear Klein-Gordon Equation . . . 28 5.1 The Asymptotic Behavior of Solutions of the linear Klein-Gordon Equation . . . 28 5.2 The Sharp Decay Estimate . . . 29 5.3 Weak Decay Estimate . . . 32 6 Asymptotic Completeness for the Critical Nonlinear Klein-Gordon Equation . . . 44 References 51

    [B] J. Bourgain.(1998), Re nement of Strichartz inequality and applications to 2D-NLS
    with critical nonlinearity, Int. Math. Res. Not., no. 8,
    [C1] C. Fe erman.(1970), Inequalities for strongly singular convolution operators, Acta
    Math. 124, 9-36.
    [C2] M. Chae, Y. Cho, and S. Lee.(2010), Mixed norm estimates of Schrodinger waves
    and their applications, Comm. PDE, 35, no. 5, 906-943.
    [D1] Dym, H. and McKean, H. P.(1972), Fourier series and integrals A.P, New York.
    253-283.
    [D2] J.M. Delort.(2001), Existence globale et comportement asymptotique pour l' equation
    de Klein-Gordon quasi lin eaire donn ees petites en dimension 1, Ann. Sci. Ecole Norm.
    Sup. no. 4, 34, 1V61.
    [D3] R. Danchin.(2005), Fourier analysis methods for PDEs, Lecture Notes 14.
    [D4] Delort, Jean-Marc.(2006), Existence globale et comportement asymptotique pour
    l'equation de KleinVGordon quasi lineaire a donnees petites en dimension 1 Ann. Scient.
    Ec. Norm. Sup.,4eserie, t. 39, p. 335 - 345.
    [E] Evans, C.L.(1998), Partial Di erential Equations, Graduate Studies in Mathematics,
    Vol. 19, GSM/19.
    [F] M. Flato, J.C.H. Simon and E. Ta
    in.(1997), The Maxwell-Dirac equations : the
    Cauchy problem, asymptotic completeness and the infrared problem, Memoirs of the
    AMS 128 ,No. 606(x+312 pages).
    [G] Greiner, W.(1990), Relativistic Quantum Mechanics, Springer-Verlag.
    [H1] L. Hormander.(1987), The lifespan of classical solutions of nonlinear hyperbolic equations,
    in Lecture notes in Math, Vol. 1256 , Springer, (214-280).
    [H2] L. Hormander.(1997), Lectures on Nonlinear hyperbolic di erential equations,
    Springer Verlag.
    [K1] T. Kato.(1983), On the Cauchy problem for the (generalized) Korteweg-de Vries equation,
    Advances in Mathematics Supplementary Studies, Studies in Applied Math. 8, pp.
    93-128.
    [K2] S. Klainerman.(1985), Global exsitence of small amplitude solutions to nonlinear
    Klein-Gordon equations in four space dimensions, Comm. Pure Appl. Math. 38 631-
    641.
    [K3] C. Kenig, G. Ponce, L. Vega.(1993), Well-posedness and scattering results for the generalized
    Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl.
    Math. 46, no. 4, 527-620.
    [K4] S. Keraani, and A. Vargas.(2009), A smoothing property for the L2-critical NLS equations
    and an application to blowup theory, Ann. Inst. H. Poincare Anal. Non Lineaire
    26, no. 3, 745-762.
    [K5] Soonsik Kwon and Tristan Roy.(2011), Bilinear local smoothing estimate for Airy
    equation, math.AP. Aug (this version, v2)).
    [L1] H. Lindblad.(1992), Global solutions of nonlinear wave equations, Comm.Pure Appl.
    Math. 45 (9), 1063-1096.
    [L2] H. Moys es Nussenzveig.(1977), The Theory of the Rainbow, Scienti c American 236.4:
    116-127.
    [L3] H. Lindblad and I. Rodnianski.(2003), The weak null condition for Einsteins equations,
    C. R. Math. Acad. Sci. Paris 336, no. 11, 901V906.
    [L4] H. Lindblad and A. So er.(2005), A remark on long range scattering for the nonlinear
    Klein-Gordon equation, J. Hyperbolic Di er. Equ. 2, no. 1, 77V89.
    [L5] Hans Lindblad and Avy So er.(2005), A remark on asymptotic completeness for the
    critical nonlinear Klein-Gordon equation, Lett. Math. Phys. 73, no. 3, 249V258.
    [S1] Sakurai, J. J.(1967), Advanced Quantum Mechanics, Addison Wesley.
    [S2] J.C.H Simon.(1983), A wave operator for a non-linear Klein-Gordon equation, Lett.
    Math. Phys. 7 , 387V398.
    [S3] J. Shatah.(1985), Normal forms and quadratic nonlinear Klein-Gordon equations,
    Comm. Pure Appl. Math. 38 685-696.
    [S4] Strauss, Walter A.(1992), Partial di erential equations: An introduction, Vol. 3. No.
    4. New York: Wiley.
    [S5] Simon, J.C.H and Ta
    in, E.(1993), The Cauchy problem for nonlinear Klein-Gordon
    equations, Comm.Math. Phys. 152 433-478.
    [S6] Stein, Elias M. and Timothy S. Murphy.(1993), Harmonic analysis: real-variable
    methods, orthogonality, and oscillatory integrals,Vol. 3. Princeton University Press.
    [S7] Serov. Lecturer-Valery.(2011), Fourier transform and distributions, Lecture Notes.
    [W] Weisskopf, Victor F.(1981), The development of eld theory in the last 50 years,
    Physics Today 34 : 69.

    下載圖示 校內:2015-07-15公開
    校外:2015-07-15公開
    QR CODE