簡易檢索 / 詳目顯示

研究生: 黃榮喜
Huang, Rong-Shie
論文名稱: 以價電子能量損失能譜技術研究纖鋅礦氧化鋅及氮化鋁之電子激發性質
Studies of Electronic Excitations in Wurtzite ZnO and AlN with Valence Electron Energy-Loss Spectroscopy
指導教授: 劉全璞
Liu, Chuan-Pu
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 108
中文關鍵詞: 價電子能量損失能譜表面電子激發表面氧化氧化鋅氮化鋁
外文關鍵詞: valence EELS, surface electronic excitation, surface oxidation, ZnO, AlN
相關次數: 點閱:84下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文之研究主題為,利用加載於穿透式掃描電子顯微鏡下之電子損失能譜儀,研究纖鋅礦半導體氧化鋅及氮化鋁之基本電子激發模態。於進行相關實驗之前,將對最近完成安裝之球差校正電子顯微鏡JEOL 2100F進行效能評估。測試結果顯示出,其最佳之空間和電子損失能譜解析度分別為0.1奈米和0.6電子伏特,有利於對材料進行原子級尺度之分析。此優越的解析能力,亦與特別針對球差校正電鏡所設計之實驗室有關,此空間配置不僅有效隔絕了外界環境的干擾,如電磁波、震動和噪音等,同時也提高了機台的穩定度。

    於氧化鋅的研究中,藉由將聚集的電子束從試片內部掃描至真空區域,可觀察到四個與表面激發相關的能譜特徵。隨著試片厚度的減少,體電漿子逐漸寬化並伴隨著能量上的紅移,且於掠入射條件下時,於16電子伏特處發展成另一個能峰。因此該對應之能譜特徵,可証實為氧化鋅之表面電漿子激發。此推論並可由該能量區間負的介電常數實部 ( εr ) 而得支持。於滿足εi > | εr | > 0之的條件下,表面激子激發模式可被證明分別存在於9.5和13.5電子伏特。其對應的特徵於電子束離開試樣進入真空時更為顯著。此外表面波導模式與契忍可夫輻射間的電子偶合,亦被發現存在於氧化鋅之能隙附近,此結果與介電理論模擬吻合。

    表面氧化層對氮化鋁低損失能譜之影響亦於本研究中被詳細探討。產生氧化之氮化鋁和本質氮化鋁間的能譜特徵差異,主要反應於體電漿子能峰之半高寬及周邊能譜特徵的寬化。此外因氧化所造成低損失能譜分布之改變,亦使得計算出氮化鋁之介電常數更加困難。考慮由厚的非晶質氧化鋁生成於氮化鋁表面之多層膜結構,介電理論的模擬結果與實驗所得的能量分佈曲線於定性上相當吻合。藉此推測於氮化鋁表面所自然生成的氧化層,其性質可能相當粗糙並具多孔性。

    The main theme of this dissertation is to investigate the fundamental electronic properties of wurtzite semiconductors including zinc oxide (ZnO) and aluminum nitride (AlN), using electron energy-loss spectroscopy (EELS) in conjunction with scanning transmission electron microscopy (STEM). Performance of the recently acquired probe-Cs-corrected JEOL 2100F TEM system is preliminarily evaluated, showing routinely achievable optimal spatial and EELS energy resolution of 1 Å and 0.6 eV, respectively. Such superb capability can also be attributed to the specifically designed laboratory, which effectively isolates the environmental interference and provides excellent stability.

    By scanning the probe across the specimen from bulk interior to vacuum, four spectral features associated with the surface excitation can be readily recognized. According to the gradual transition of the volume plasmon with decreasing thickness, the surface plasmon (SP) of ZnO at about 16 eV is assigned. Most importantly, the criterion for SP excitation with a negative real part of the dielectric function is met within this energy regime. The occurrence of surface exciton polaritons (SEPs), under the relaxed condition of εi > | εr | > 0, are clearly observed at 9.5 and 13.5 eV in grazing incidence. Furthermore surface guided light modes coupled to the confined Čerenkov radiation just above the bandgap has also been successfully identified, which is well consistent with the theoretical simulations.

    The low-loss spectrum of AlN has also been studied by STEM-EELS with the emphasis on the influence of surface oxidation. Contrary to intrinsic bulk AlN, the oxidized AlN exhibits considerable spectral broadening in the full width at half maximum (FWHM) of volume plasmon as well as in the subsidiary features. The modification in the low-loss lineshapes because of oxidation significantly complicates the determination of the dielectric function of intrinsic AlN. Simulations based on dielectric theory qualitatively conform to the experimental results while thick overlayers are incorporated, further suggesting that the surface oxide of AlN can be quite rough and porous in nature.

    中文摘要 ……………………………………………………………………………… I Abstract ………………………………………………………………………………… III Acknowledgement …………………………………………………………………… V Table of Contents …………………………………………………………………… VIII List of Figures ……………………………………………………………………… XI List of Tables ………………………………………………………………………… XVI Chapter 1 Introduction ……………………………………………………………… 1 Chapter 2 Review of Fundamental Theories of Valence EELS……………………… 4 2.1 Physics of the low-loss spectrum ………………………………………… 4 2.1.1 Interaction of Electrons with Matters ………………………………… 4 2.1.2 Physical Model of Dielectric Response of a Medium ……………… 6 2.1.3 Theoretical Calculations of Respective Dielectric Behaviors ……… 10 2.2 Surface Plasmon …………………………………………………………… 16 2.2.1 Surface Plasmon in a Single Interface ……………………………… 16 2.2.2 Surface Plasmon in a Multilayer System and Dispersion Splitting … 20 2.3 Guided light mode …………………………………………………………… 24 2.4 ?erenkov Radiation ………………………………………………………… 28 2.4.1 Formation of ?erenkov Radiation ……………………………… 28 2.4.2 Influence of ?erenkov Radiation on Low-Loss Spectral Analysis …. 33 2.5 Kramers-Kronig Analysis …………………………………………………… 36 2.5.1 Performance of KKA Routine ……………………………………… 36 2.5.2 Other Crucial Issues for Accurate KKA …………………………… 37 2.6 Kr?ger Equation …………………………………………………………… 42 Chapter 3 Experimental and Analytical Techniques ………………………………… 46 3.1 Spherical Aberration Corrected Transmission Electron Microscopy ……… 46 3.2 Design of Installation Laboratory for Cs-corrected TEM …………………… 49 3.3 Other Environmental Factors for Microscope Performance ………………… 51 3.4 Energy Resolution of EELS ……………………………………………….… 54 3.4.1 Distribution of the ZLP and Evaluation of Energy Resolution …… 54 3.4.2 Improving Energy Resolution at a Fixed Acceleration Voltage ………………………… 56 3.4.3 Influences of Environment Stability on Energy Resolution ………… 60 3.5 Determination of Significant Angular Parameters ………………………… 61 3.5.1 Convergence Semi-Angle of the Electron Probe …………………… 61 3.5.2 Collection Semi-Angle of the EELS Spectrometer ………………… 63 3.6 Spectrum Imaging ………………………………………………………… 64 Chapter 4 Characterization of Wurtzite ZnO using Valence Electron Energy-Loss Spectroscopy …………………………………………………………………………… 66 4.1 Literature Survey of Recent EELS Studies on ZnO …………………………. 66 4.2 Experimental Process ……………………………………………………… 6 4.3 Spectral Results and Discussion …………………………………………… 69 4.3.1 Derivation of the Dielectric Function of ZnO ……………………… 71 4.3.2 Correlation between the Dielectric Function and Low-Loss Excitatio.72 4.3.3 Other Surface Electronic Modes ……………………………………. 75 4.4 Theoretical Simulation with Kr?ger Equation …………………… 80 4.5 Analysis of Spatial Distribution of Respective Electronic Modes ………… 84 4.6 Influence of Surface Contamination on the Low-Loss Features …………… 85 Chapter 5 Influence of Surface Oxidation on the Valence Electron Energy-Loss Spectrum of Wurtzite Aluminum Nitride …………………………………………… 89 5.1 Survey of Valence EELS Studies on AlN and Current Problems …………… 89 5.2 Experimental Process ……………………………………………………… 93 5.3 Spectral Results and Discussions ………………………………………… 93 5.3.1 Spectral Variation with Surface Oxidation in AlN ………………… 93 5.3.2 Comparison of Dielectric Function between Intrinsic and Oxidized AlN ………………………………………………………………………………95 5.4 Theoretical Simulation with Bolton-Chen Formalism ……………………… 98 Chapter 6 Conclusion Remark …………………………………………………… 101 Reference …………………………………………………………………………… 102 Publication List ……………………………………………………………………… 107

    [1] M. Haider, S. Uhlemann, E. Schwan, H. Rose, B. Kabius, K. Urban, Nature 392/6678 (1998) 768.
    [2] M. Haider, H. Rose, S. Uhlemann, E. Schwan, B. Kabius, K. Urban, Ultramicroscopy 75/1 (1998) 53.
    [3] L. Reimer, Energy-Filtering Transmission Electron Microscopy, Springer, 1995.
    [4] R.F. Egerton, Electron energy-loss spectroscopy in the electron microscope, Springer, 2011.
    [5] H. Raether, Excitation of plasmons and interband transitions by electrons, Springer Tracts in Modern Physics, 1980.
    [6] R.L. Hengehold, R.J. Almassy, F.L. Pedrotti, Phys. Rev. B 1/12 (1970) 4784.
    [7] Y. Ding, Z.L. Wang, Journal of Electron Microscopy 54/3 (2005) 287.
    [8] J. Wang, X.P. An, Q. Li, R.F. Egerton, Applied Physics Letters 86/20 (2005).
    [9] Z.H. Zhang, X.Y. Qi, J.K. Han, X.F. Duan, Micron 37/3 (2006) 229.
    [10] M. Stoger-Pollach, T. Galek, Micron 37/8 (2006) 748.
    [11] A.D. Dorneich, R.H. French, H. Mullejans, S. Loughin, M. Ruhle, J. Microsc.-Oxf. 191 (1998) 286.
    [12] G. Brockt, H. Lakner, Micron 31/4 (2000) 435.
    [13] M. Sternitzke, J. Am. Ceram. Soc. 76/9 (1993) 2289.
    [14] M. MacKenzie, A.J. Craven, J. Phys. D-Appl. Phys. 33/14 (2000) 1647.
    [15] E.D. Palik, Handbook of optical constants of solids, Academic Press, 1985.
    [16] P.E. Batson, Phys. Rev. Lett. 49/13 (1982) 936.
    [17] F.J.G. de Abajo, A.G. Pattantyus-Abraham, N. Zabala, A. Rivacoba, M.O. Wolf, P.M. Echenique, Phys. Rev. Lett. 91/14 (2003).
    [18] F.J.G. de Abajo, M. Kociak, Phys. Rev. Lett. 100/10 (2008).
    [19] J. Garcia Sol?, L. E. Bausa, D. Jaque, An introduction to the optical spectroscopy of inorganic solids, Wiley, 2005.
    [20] H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, Springer, 1988.
    [21] H. Raether, Physics of thin film: Advances in research and development vol. 9, Academic Press, 1976.
    [22] 邱國斌, 蔡定平, 物理雙月刊 28 (2006) 472.
    [23] 吳明耀, 劉威志, 物理雙月刊 28 (2006) 486.
    [24] S.A. Maier, Plasmonics: Fundamentals and Applications, Springer, 2007.
    [25] C.H. Chen, Studies of optical excitations in thin solid films by electron scattering, Cornell University, 1974.
    [26] M. Stoger-Pollach, H. Franco, P. Schattschneider, S. Lazar, B. Schaffer, W. Grogger, H.W. Zandbergen, Micron 37/5 (2006) 396.
    [27] C.v. Festenberg, Zeitschrift Fur Physik 214/5 (1968) 464
    [28] C. von Festenberg, E. Kroger, Physics Letters A 26/8 (1968) 339.
    [29] M. Stoger-Pollach, Micron 39/8 (2008) 1092.
    [30] M. Stoger-Pollach, P. Schattschneider, Ultramicroscopy 107/12 (2007) 1178.
    [31] L. Gu, V. Srot, W. Sigle, C. Koch, P. van Aken, F. Scholz, S.B. Thapa, C. Kirchner, M. Jetter, M. Ruhle, Phys. Rev. B 75/19 (2007).
    [32] R. Erni, N.D. Browning, Ultramicroscopy 108/2 (2008) 84.
    [33] C.v. Festenberg, Zeitschrift Fur Physik 227 (1969) 453.
    [34] E. Kroger, Zeitschrift Fur Physik 216/2 (1968) 115.
    [35] R.H. Ritchie, Phys. Rev. 106/5 (1957) 874.
    [36] N. Dellby, O.L. Krivanek, P.D. Nellist, P.E. Batson, A.R. Lupini, Journal of Electron Microscopy 50/3 (2001) 177.
    [37] D.A. Muller, E.J. Kirkland, M.G. Thomas, J.L. Grazul, L. Fitting, M. Weyland, Ultramicroscopy 106/11-12 (2006) 1033.
    [38] D.A. Muller, J. Grazul, Journal of Electron Microscopy 50/3 (2001) 219.
    [39] M. A.O'Keefe, J.H. Turner, J.A. Musante, Microscopy Today 12 (2004) 8.
    [40] K. Kimoto, K. Ishizuka, T. Asaka, T. Nagai, Y. Matsui, Micron 36/5 (2005) 465.
    [41] M.J. Fransen, T.L. van Rooy, P. Kruit, Appl. Surf. Sci. 146/1-4 (1999) 312.
    [42] C. Lea, R. Gomer, Phys. Rev. Lett. 25/12 (1970) 804.
    [43] P.E. Batson, D.W. Johnson, J.C.H. Spence, Ultramicroscopy 41/1-3 (1992) 137.
    [44] K. Kimoto, G. Kothleitner, W. Grogger, Y. Matsui, F. Hofer, Micron 36/2 (2005) 185.
    [45] K. Kimoto, Y. Matsui, J. Microsc.-Oxf. 208 (2002) 224.
    [46] Gatan DigitalMicrograph Documentation.
    [47] R.C. Wang, C.P. Liu, J.L. Huang, S.J. Chen, Nanotechnology 17/3 (2006) 753.
    [48] C.L. Kuo, R.C. Wang, J.L. Huang, C.P. Liu, Y.F. Lai, C.Y. Wang, H.C. Chung, Nanotechnology 19/28 (2008).
    [49] R. Erni, N.D. Browning, Ultramicroscopy 104/3-4 (2005) 176.
    [50] Z.H. Zhang, M. He, Q. Li, Solid State Commun. 149/41-42 (2009) 1856.
    [51] J. Wang, Q. Li, R.F. Egerton, Micron 38/4 (2007) 346.
    [52] F.J.G. de Abajo, A. Howie, Phys. Rev. B 65/11 (2002) 115418.
    [53] M.W. Chu, V. Myroshnychenko, C.H. Chen, J.P. Deng, C.Y. Mou, F.J.G. de Abajo, Nano Lett. 9/1 (2009) 399.
    [54] T.L. Ferrell, P.M. Echenique, Phys. Rev. Lett. 55/14 (1985) 1526.
    [55] F.J.G. de Abajo, Phys. Rev. B 59/4 (1999) 3095.
    [56] M.S. Xue, W. Li, F.J. Wang, J.S. Lu, J.P. Yao, J. Alloy. Compd. 502/1 (2010) 127.
    [57] M.W. Chu, C.H. Chen, F.J.G. de Abajo, J.P. Deng, C.Y. Mou, Phys. Rev. B 77/24 (2008).
    [58] S.C. Liou, M.W. Chu, Y.J. Lee, M. Hong, J. Kwo, C.H. Chen, New Journal of Physics 11 (2009).
    [59] C.T. Wu, M.W. Chu, L.C. Chen, K.H. Chen, C.W. Chen, C.H. Chen, Micron 41/7 (2010) 827.
    [60] F. Yang, J.R. Sambles, G.W. Bradberry, Phys. Rev. Lett. 64/5 (1990) 559.
    [61] F.Z. Yang, G.W. Bradberry, J.R. Sambles, Phys. Rev. Lett. 66/15 (1991) 2030.
    [62] F.Z. Yang, J.R. Sambles, G.W. Bradberry, Phys. Rev. B 44/11 (1991) 5855.
    [63] P. Gori, M. Rakel, C. Cobet, W. Richter, N. Esser, A. Hoffmann, R. Del Sole, A. Cricenti, O. Pulci, Phys. Rev. B 81/12 (2010).
    [64] C.H. Chen, J. Silcox, R. Vincent, Phys. Rev. B 12/1 (1975) 64.
    [65] A. Yurtsever, M. Couillard, D.A. Muller, Phys. Rev. Lett. 100/21 (2008).
    [66] H. Saito, C.H. Chen, H. Kurata, J. Appl. Phys. 113/11 (2013).
    [67] T. Malis, S.C. Cheng, R.F. Egerton, Journal of Electron Microscopy Technique 8/2 (1988) 193.
    [68] C.T. Wu, M.W. Chu, C.P. Liu, K.H. Chen, L.C. Chen, C.W. Chen, C.H. Chen, Plasmonics 7/1 (2012) 123.
    [69] K. Jarausch, P. Thomas, D.N. Leonard, R. Twesten, C.R. Booth, Ultramicroscopy 109/4 (2009) 326.
    [70] T.C. Isabell, P.E. Fischione, C. O'Keefe, M.U. Guruz, V.P. Dravid, Microsc. microanal. 5/2 (1999) 126.
    [71] Y. Taniyasu, M. Kasu, T. Makimoto, Nature 441/7091 (2006) 325.
    [72] M.R.S. Huang, R. Erni, H.Y. Lin, R.C. Wang, C.P. Liu, Phys. Rev. B 84/15 (2011).
    [73] R.B. Pettit, J. Silcox, R. Vincent, Phys. Rev. B 11/8 (1975) 3116.
    [74] D.J. Jones, R.H. French, H. Mullejans, S. Loughin, A.D. Dorneich, P.F. Carcia, J. Mater. Res. 14/11 (1999) 4337.
    [75] N. Lieske, R. Hezel, J. Appl. Phys. 52/9 (1981) 5806.
    [76] M. Gautier, J.P. Duraud, C. Legressus, Surf. Sci. 178/1-3 (1986) 201.
    [77] R. Erni, S. Lazar, N.D. Browning, Ultramicroscopy 108/3 (2008) 270.
    [78] J.P.R. Bolton, M. Chen, Ultramicroscopy 60/2 (1995) 247.
    [79] C.H. Chen, J. Silcox, Solid State Commun. 17/3 (1975) 273.
    [80] H. Buhr, G. Muller, H. Wiggers, F. Aldinger, P. Foley, A. Roosen, J. Am. Ceram. Soc. 74/4 (1991) 718.
    [81] J. Park, S. Heo, J.G. Chung, H. Kim, H. Lee, K. Kim, G.S. Park, Ultramicroscopy 109/9 (2009) 1183.
    [82] C.G. Olson, J.H. Sexton, D.W. Lynch, A.J. Bevolo, H.R. Shanks, B.N. Harmon, W.Y. Ching, D.M. Wieliczka, Solid State Commun. 56/1 (1985) 35.
    [83] D. Dorignac, A. Mazel, Y. Kihn, J. Sevely, B. Aspar, B. Armas, C. Combescure, J. European Ceram. Soc. 13/4 (1994) 345.

    下載圖示 校內:2015-02-14公開
    校外:2015-02-14公開
    QR CODE