| 研究生: |
李炳仁 Lee, Ping-Jen |
|---|---|
| 論文名稱: |
奈米結構半赫勒斯熱電材料研究與最佳化元件模擬分析 Study of Nano-Structure Effect on Thermoelectric Material of Half-Heusler Alloys and Optimal Design for Thermoelectric Generators Using Finite Element Analysis |
| 指導教授: |
趙隆山
Chao, Long-Sun |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 197 |
| 中文關鍵詞: | 熱電 、數值分析 、半赫勒斯 |
| 外文關鍵詞: | Thermoelectric, Numerical Analysis, Half-Heusler |
| 相關次數: | 點閱:72 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要的目的在於以研製中/高溫(450K~800K)熱電材料之塊材為主及利用數值模擬來最佳化其元件參數,這有助於解決日常生活中所見廢熱問題,諸如:工業廢熱、散熱岐管等,特別是在汽車上的觸煤轉換器上之廢熱利用。實驗中的主要研製的材料是具半赫勒斯結構之(Ti/Zr/Hf)1-xMxNi1-yPdySn1-zSbz (M= V,Nb,Ta)的多元(高熵)合金,原材經由熔煉鑄造之方式合成,並加入過渡金屬、半金屬/半導體等元素,且藉由多元合金易於趨近奈米化之特性,或利用原位析出法生成奈米相,最後再經由XRD繞射儀、SEM、TEM 等儀器來佐證。此熱電材料性能的提升方法是藉由(1)利用半金屬或半導體材料調控電性(荷);(2)利用重原子/大原子之部份取代,降低熱傳導係數;(3)藉由奈米析出物或過飽和析出物與點缺陷,以增加聲子散射;(4)利用熱處理方式,調整材料性質。
經由實驗結果,N-Type材料之最佳熱電優值及其合成條件分別如下:(1)Ti0.3(ZrHf)0.69V0.01Ni0.9Pd0.1Sn0.99Sb0.01 在溫度820K時,可得到最佳ZT值為0.92,並發現具有奈米結構析出物,奈米粒徑約為60nm;(2) Ti0.5(ZrHf)0.49Nb0.01Ni0.9Pd0.1Sn0.98Sb0.02 在溫度900K時,可得到最佳ZT值為0.66;(3) Ti0.5Zr0.25Hf0.22Ta0.03NiSn0.98Sb0.02在溫度879K時,可得到最佳ZT值為0.77;(4) (ZrHf)0.99V0.01NiSn0.98Sb0.02 在溫度746K時,可得到最佳ZT值為0.81,並具有奈米結構析出物。
另外在P-Type材料方面,以ZrCoSb為基材,並在Sb的位置上加上微量的Sn,可得到在升溫下之熱電功率因子,其研究結果為:(1) (Zr0.9Sc0.05)CoSb0.9Sn0.1 在溫度800K下,可得到39.1μW/cm-K2 ;(2) (Zr0.9Sc0.05)CoSb0.98Sn0.02 在800K下,可達44.5μW/cm-K2。
而在數值模擬分析的部分,是利用方向性凝固來製備高性能碲化鉍化合物Bi2Te3(Se,Sb)之熱電材料(P type ZT值~1.25;N Type ZT值~0.95),經由有限元素法模擬之非線性分析可得知: (1)當外部熱沉溫差達100K且內部熱電材料溫差為82.1K時,在不同的熱電對數目下,可繪出所對應的輸出電力與輸出功率曲線分佈圖,此圖可再串聯成一條最佳線性關係,可得知熱電對高度與最高的輸出電力與效率;(2)熱電對密度增加時亦可輸出較多的電力,但仍有其最佳之數量,而焊料容許應力將會超過設計值,可能會造成元件的損壞。
High-temperature thermoelectric bulk materials are developed in this study. They can help to recycle the waste heat of daily life, such as the heat from industrial waste gas, heat dissipation manifold, heat exchanger, and especially from the catalyst converter of a car.
In this dissertation, the development is based on the high entropy alloy system of (Ti/Zr/Hf)1-xMxNi1-yPdySn1-zSbz (M = V, Nb, Ta), which is synthesized by using a designed melting and solidifying scheme. Transition metals and elemental semi-metal/semiconductor materials are added into the manufactured materials. The structure of high entropy alloy tends to be nanolized or use in-situ precipitation methods, which can be verified by applying X-ray diffraction, scanning electron microscopy, transmission electron microscopy etc. In the developed materials, the formation of Half-Heusler FCC phases is found, which could significantly increase the thermoelectric property.
In the research, the primary matrix material is TiNiSn of Half-Heusler alloy. The investigated methods for material development are (1) using semi-metal or semiconductor materials to control the electrical characteristics, (2) partially replacing the matrix atoms by heavy or big atoms to reduce the thermal conductivities, (3) increasing the phonon scattering by the nano-precipitates and point defects, (4) utilizing heat treatment to adjust the thermoelectric property.
From the experimental results, single phase N-Type Half-Heusler compound has the following peroformances of thermoelectric figure of merit: (1) the ZT value of 0.92 is obtained at 820K for Ti0.3(ZrHf)0.69V0.01Ni0.9Pd0.1Sn0.99Sb0.01 and the size of nano structure is about 60 nm; (2) for Half-Heusler compounds of Nb-doped (Zr/Hf) sites, the high ZT value is obtained, which is 0.66 at 900K for Ti0.5(ZrHf)0.49Nb0.01Ni0.9Pd0.1Sn0.98Sb0.02; (3) for Half-Heusler compounds of Ta-doped Hf sites, the maximum value of ZT for Ti0.5Zr0.25Hf0.22Ta0.03NiSn0.98Sb0.02 compounds is 0.77 at 879K; (4) with V-doped ZrNiSn base, the ZT of (ZrHf)0.99V0.01NiSn0.98Sb0.02 compounds is 0.81 at 746K, which have the nano phase of In Situ forming nano structure. Besides, for ZrCoSbSn Half-Heusler compounds in which Sn substitutes for Sb, the maximu values of the power factor of (Zr0.9Sc0.05)CoSb0.9Sn0.1 and (Zr0.9Sc0.05)CoSb0.98Sn0.02 are 39.1 and 44.5 μWcm-1K-2 at 800K, respectively.
The behavior of thermoelectric modules is simulated numerically with the finite element analysis for the high-performance Bi2Te3(Se,Sb) alloys manufctured by using a directional solidification method, whose maximum values of ZT for P and N Types are 1.25 and 0.95 at 300K. The results based on the geometrical configuration can be summarized as follows: (1) under the operating conditions that the temperature differences of the heat sink and the TE leg surfaces are about 100K and 82.1K respectively, the profiles of output power versus thermoelement length for the different number of thermoelectric leg pairs present a linear relationship, indicating the maximun efficiency for each thermoelectric leg pair; (2) the module output power increases with the number of leg pairs. However, the maximum stresses observed on the solder located at the module corner will exceed its allowable value, which could damage the module.
[1] 李方正,“新能源”,化學工業出版社,北京,第1章,pp.2-18,2008。
[2]D. M. Rowe, “Thermoelectrics handbook: macro to nano,” Taylor & Francis Group, FL (U.S.A.), Ch. 1, pp.1-7, 2006.
[3]http://www.aist.go.jp/aist_e/latest_research/2005/20050617/20050617.html
[4]Jihui Yang and Caillat Thierry, “Thermoelectric Materials for Space and Automotive. Power Generator,” MRS Bulletin, Vol.31, No.3, pp. 224-229, 2006.
[5]James R. and Jr.Gaines, “Nanostructure-Enhanced Bulk Thermoelectric Materials,” MetaMateria Partners, LLC, 2007.
[6]饒達仁,“熱電元件在微電子及其應用”,熱電致冷及廢熱發電節能技術研討會,pp. 161,2008。
[7]Rama Venkatasubramanian, Edward Siivola, Thomas Colpitts and Brooks O'Quinn, “Thin-film Thermoelectric Devices with High Room-Temperature Figures of Merit,” Nature 413, pp. 597-602, 2001.
[8]K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis and M.G. Kanatzdis, “Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit,“ Science 303, p. 818, 2004.
[9]T. C. Harman, M. P. Walsh, B. E. Laforge and G. W. Turne., “Nanostructured Thermoelectric Materials,” Journal of Electronic Materials, Vol. 34, pp. L19-L22, 2005.
[10]S. J. Poon, “Recent Trends in Thermoelectric Materials Research II, Semiconductors and Semimetals,” Vol. 70, edited by T. M. Tritt, New York, USA, pp.37-76, 2001.
[11]F. G. Aliev, N. B. Brandt, V. V. Moshchalkov, V. V. Kozyrkov, R. V. Skolozdra and A. I. Belogorokhov, “Gap at the Fermi Level in the Intermetallic Vacancy System RBiSn(R=Ti,Zr,Hf),” Phys.B:Condens Matter. 75, p.167, 1989.
[12]B. A. Cook, J. L. Harringa, Z.S. Tan and W.A. Jesser, “Proceedings of the 15th International Conference on Thermoelectrics,” Istanbul Turkey 122, 1996.
[13]C. Uher, J.Yang, S. Hu, D. T. Morelli, and G. P. Meisner, “Transport Properties of Pure and Doped MNiSn (M=Zr, Hf),” Phys. Rev. B 59, 8615-8621, 1999.
[14]Terry. M. Tritt, S. Bhattacharya, Y. Xia, V. Ponnambalam, S. J. Poon and N. Thadhani, “Grain Size Effects on Reductions in Lattice Thermal Conductivity of TiNiSn Half-Heusler Alloys,” Appl. Phys. Lett. 81, 1, p. 43, 2002.
[15]George S. Nolas, Joe Poon and Mercouri Kanatzidis, “Recent Developments in Bulk Thermoelectric Materials,” MRS bulletin 31, p. 201, 2006.
[16] Hiroaki Muta, Takanori Kanemitsu, ken Kurosaki and Shinsuke Yamanaka, “High-Temperature Thermoelectric Properties of Nb-doped MNiSn (M = Ti, Zr) Half-Heusler Compound,” J. alloys compd 469, pp. 50-55, 2009.
[17]Joseph R. Sootsman, Duck Young Chung, Mercouri G. Kanatzidis and Angew, “New and Old Concepts in Thermoelectric Materials,” Chem. Int. Ed., 48, pp. 8616 - 8639, 2009.
[18]Daniel D. Pollock, “Thermoelectricty: Theory, Thermometry, Tool,” pp. 1-2, ASTM Special Technical Publication 852, Pennsylvania, USA, 1985.
[19]Tom Shachtman, “Absolute Zero and the Quest for Absolute Coldm,” Mariner Books, Houghton Mifflin Company, New York, pp. 86, 1999.
[20]Edumund J. Winder and Arthur B. Ellis, Journal of Chemical Education, “Thermoelectric Devices: Solid-State Refrigerators and Electrical Generators in the Classroom,” Vol.73, pp.940, 1996.
[21]N. B.Hanny, “Semiconductors; Reinhold,” pp.41, New York, 1959.
[22] http://edge.rit.edu/content/P09451/public/thermo_module.jpeg
[23]G. Jeffrey Snyder and Eric S. Toberer, “Complex Thermoelectric Materials,” Nature Materials, Vol.7, pp.104-114, 2008.
[24]Christopher J. Vineis, Ali Shakouri, Arun Majumdar and Mercouri G. Kanatzidis, “Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features,” DOI: 10.1002/adma.201000839, Adv. Mater., 2010.
[25]http://www.zts.com/node/5481.
[26]http://wardsauto.com/ar/cooled_seats_mpg/
[27]K. T. Chau, “Overview of Electric Vehicle Research,” http://engg.hku.hk/home/ seminars /FSS /FSS2010-03-05. pdf.
[28]Hicks L. D. and Dresselhaus M. S., “Effect of Quantum-Well Structures on the Thermoelectric Figure of Merit,” Phys. Rev. B, 47(19), pp.12727-12731, 1993.
[29]Hicks L. D. and Dresselhaus M. S., “Thermoelectric Figure of Merit of a One-Dimensional Conductor,” Phys. Rev. B, 47(24), pp.16631-16634, 1993.
[30]Hicks L. D., Harman T. C., Sun X. and Dresselhaus M. S., “Experimental Study of the Effect of Quantum-Well Structures on the Thermoelectric Figure of Merit,” Phys. Rev. B, 53(16), pp.10493-10496, 1996.
[31]J. Androulakis, C. H. Lin, H. J. Kong, C. Uher, C. I. Wu, T. Hogan, B. A. Cook, T. Caillat, K. M. Paraskevopoulos and M. G. Kantzidis, “Spinodal Decomposition and Nucleation and Growth as a Means to Bulk Nanostructured Thermoelectrics: Enhanced Performance in Pb1-xSnxTe−PbS,” J. Am. Chem. Soc. 129, pp.9780, 2007.
[32]P. F. P. Poudeu, J. D’Angelo, A. D. Downey, J. L. Short, T. P. Hogan, M. G. Kanatzidis and Angew., “High thermoelectric Figure of Merit and Nanostructuring in Bulk P-Type Na1-xPbmSbyTem+2,” Chem. Int. Ed. 45, pp. 3835-3889, 2006.
[33]黃振東,謝慧霖,“節能減碳潮流下之全球熱電發電技術發展”,工業材料雜誌286期,新竹,pp.109-117,2010。
[34]李炳仁,“從2010國際熱電技術研討會看最新技術發展”,工業材料世界網,新竹, 2010。
[35]Wenqing Zhang and Lidong Chen, “Overview of Research on Thermoelectric Materials and Devices in China,” PL-2, Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai, China (2010 ICT), 2010.
[36]J. P. Heremans, C. M. Thrush and D. T. Morelli, “Thermopower Enhancement in Lead Telluride Nanostructures,” Phys. Rev. B, 70(11), pp.115334, 2004.
[37]Bed Poudel, Qing Hao, Yi Ma, Yucheng Lan, Austin Minnich, Bo Yu, Xiao Yan, Dezhi Wang, Andrew Muto, Daryoosh Vashaee, Xiaoyuan Chen, Junming Liu, Mildred S. Dresselhaus, Gang Chen and Zhifeng Ren, “High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys,” Science, 320(5876), pp.634-638, 2008.
[38]W. Felsch, S. G. Kushnir, K. Samwer, H. Schröder, R. Van den Berg , V. and H. Löhneysen, “Delocalization of the Ce 4f Shell in Amorphous Ce75.5Co24.5,” Zeitschrift fur Physik B-Condensed Matter ,Vol. 48, 2, pp.99-107, 1982.
[39]Wenjie Xie, Xinfeng Tang, Yonggao Yan, Qingjie Zhang and Terry M. Tritt, “Unique Nanostructures and Enhanced Thermoelectric Performance of Melt-Spun BiSbTe Alloys,” J. Appl. Phys., 105(11), p.113713, 2009.
[40]Han Li, Xinfeng Tang, Qingjie, Zhang and Ctirad Uher, “High Performance InxCeyCo4Sb12 Thermoelectric Materials with In Situ Forming Nanostructured InSb Phase,” Applied Physics letters 94, pp.102114-102117, 2009.
[41]W. J. Xie, J. He, S. Zhu, X. L. Wang, T. Holgate, J. W. Graff, V. Ponnambalam, S. J. Poon, X. F. Tang, Q. J. Zhang and T. M. Tritt, “Simulataneously Optimizing The Independendent Thermoelectric Properties in (Ti,Zr,Hf)(Co,Ni)Sb Alloy by In Situ Forming InSb Nanoinclusions,” Acta Materialia, 58 9, pp.4705-4713, 2010.
[42]陳立東,熊震,柏勝強,“納米複合熱電材料研究進展”,無機材料學報,Vol.25,No. 6,2010。
[43]Teruyuki Ikeda, Sossina M. Haile, Vilupanur A. Ravi, Hesham Azizgolshani, Franck Gascoin and G. Jeffrey Snyder, “Solidification Processing of Alloys in the Pseudo-Binary PbTe–Sb2Te3 System,” Acta Materialia, 55, pp.1227-1239, 2007.
[44]Jamed D. Patterson and Brenard C. Bailey, “Solid-State Physics: Introduction to the Theory,”pp.296-302, Springer, New York, USA, 2007.
[45]S. O. Kasap, “Principles of Electrical Engineering Materials and Devices,” McGraw-Hill, Singapore, pp.338-340, 2000.
[46]洪連輝,劉立基,魏榮君,“固態物理學導論,第7版”,pp. 221-252,高立圖書有限公司,台灣,1997。(原著:Charles Kittel, “Introduction to Solid States Physics,” 7th ed., John Wiley and Dons, Inc, U.S.A, 1996)
[47]Terry M. Tritt, “Thermal Conductivity: Theory , Properties and Application,” pp.2-17, Spinger, New York, USA, 2004.
[48]Daniel D. Pollock, “Thermoelectricty: Theory, Thermometry, Tool,” pp. 82-90, ASTM Special Technical Publication 852, Pennsylvania, USA, 1985.
[49]Terry M. Tritt, “Thermal Conductivity: Theory, Properties and Application,” pp.93-121, Springer, New York, USA, 2004.
[50]洪連輝,劉立基,魏榮君,“固態物理學導論,第7版”,pp. 114-118,高立圖書有限公司,台灣,1997。(原著:Charles Kittel, “Introduction to Solid States Physics,” 7th ed., John Wiley and Dons, Inc, U.S.A, 1996)
[51]G. Chen, “Phonon transport in Low Dimensional Structures,” Semiconductors and Semimetals, Academic Press, California, U.S.A.,Vol.71, pp.203-258, 2001.
[52]S. T. Huxtable, A. R. Abramson, A. Majumdar, “Heat Transport in Supperlattice and Nanowires,” WITpress, Boston, USA, pp.100-104, 2004.
[53]S. O. Kasap, “Principles of Electrical Engineering Materials and Devices,” McGraw-Hill, Singapore, pp. 141-142, 2000.
[54]Chaiken P. M., “An Introduction to Thermopower for Those Who Might Want to Use It to Study Organic Conductors and Superconductors,” Pergamon Press, New York, USA, pp.101-105, 1990.
[55]N.F. Mott, H. Jones, “The Theory of the Properties of Metals and Alloys,” Dover, New York, USA, pp.130, 1958.
[56]D. D. Pollock, “The Theory and Properties of Thermocouple Elements,” ASTM 492, Philadelphia, USA, pp.28-41, 1971.
[57]S. O. Kasap, “Principles of Electrical Engineering Materials and Devices,” McGraw-Hill, Singapore, pp. 274-278, 2000.
[58]S .O. Kasap, “Principles of Electrical Engineering Materials and Devices,” McGraw-Hill, Singapore, pp. 341-342, 2000.
[59]Terry M. Tritt, “Thermal Conductivity: Theory, Properties and Application,” pp.109-110, Spinger, New York, USA, 2004.
[60]L. A. Anatychuk, “Physics of Thermoelectricity,” Institute of Thermoelectricity, Academy of Sciences and Ministry of Education of Ukraine, Ukraine, pp.184-186, 1998.
[61]P. J. Webster and K. R. A. Ziebeck, “Heusler Alloys in Landolt-Bornstein New Series Group III,” Vol. 19C, H. R. J. Wijn (Ed.) (Springer, Berlin, Germany, 1988), p. 75.
[62]W. Jeitschko, “Transition Metal Stannides with MgAgAs and MnCu2Al Type Structure Metal,” Trans. 1, 3159, 1970.
[63]J. Tobola, J. Pierre, S. Kaprzyk, R. V. Skolozdra and M. A. Kouacou, “Crossover from Semiconductor to Magnetic Metal in Semi-Heusler Phases as a Function of Valence Electron Concentration,” J. Phys.: Condens. Matter, Vol. 10, No. 5, pp. 1013, 1998.
[64]V. Ponnambalam, Y. Xia, S. Bhattacharya, A. L. Pope, S. J. Poon and T. M. Tritt, “Half-Heusler Phases as Prospective p-Type Thermoelectric Materials,” Proceedings ICT 2005, pp.379-382, 2005.
[65]F. G. Aliev, V. V. Kozyrkov, V. V. Moshchalkov, R. V. Skolozdra and K. Durczewski, “Narrow Band in the Intermetallic Compounds MNiSn (M = Ti, Zr, Hf), ” J. Phys. B - Condensed Matter 80, pp.353-357, 1990.
[66]Aliev ,F. G., Brandt, N. B., Kozyr'kov, V. V., Moshchalkov, V. V., Skolozdra, R. V., Stadnyk, Yu. V. and Pecharskiǐ, V. K., “Metal-Insulator Transition of RNiSn (R = Zr, Hf, Ti) Intermetallic Vacancy Systems,” ZhETF Pis ma Redaktsiiu, Vol. 45, pp.535 , 1987.
[67]Serdar Öğüt and Karin M. Rabe, “Band Gap and Stability in the Ternary Intermetallic Compounds NiSnM (M=Ti,Zr,Hf): A First-Principles Study , ” Phys. Rev. B 51, pp.10443–10453,1995.
[68]G. A. Slack, “In CRC Handbook of Thermoelectrics, ” edited by D. M. Rowe, CRC Press, Boca Raton, Florida, USA, pp.407,1995.
[69]V. M. Browning, S. J. Poon, T. M. Tritt, A. L. Pope, S. Bhattacharya, P. Volkov, J. G. Song, V. Ponnambalam, and A. C. Ehrlich, “in 1998 MRS Symposium Proceedings, ” edited by T. M. Tritt, M. Kanatzidis, H. B. Lyon Jr., and G. D. Mahan (Materials Research Society, Warrendale, Pennsylvania, USA), pp. 403–412, 1999.
[70]Yan Ping Wang, Bang Sheng Li and Heng Zhi Fu, “Solid Solution or Intermetallics in a High Entropy Alloy,” Advanced Engineering Materials, Volume 11, Issue 8, p. 641–644, 2009.
[71]F. J. Wang, Y. Zhang and G. L. Chen, “Cooling Rate and Size Effect on the Microstructure and Mechanical Properties of AlCoCrFeNi High Entropy Alloy,” J. Eng. Mater. Technol., Vol.1, 31, Issue 3, pp. 034501-034504, 2009.
[72]Chung-Jin Tong, Min-Rui Chen, Jien-Wei Yeh, Su-Jien Lin, Swe-Kai Chen, Tao-Tsung Shun and Shou-Yi Chang, “Mechanical Performance of the AlxCoCrCuFeNi High–Entropy Alloy System with Multiprincipal Elements,” Metallurgical and Materials Transactions A, Vol. 36, No.5, pp.1263-1271, 2005.
[73]葉均蔚,“奈米高熵合金”,工業材料224期,新竹,pp.74,2005。
[74]John Androulakis, Chia-Her Lin, Hun-Jin Kong, Ctirad Uher, Chun-I Wu, Timothy Hogan, Bruce A. Cook, Thierry Caillat, Konstantinos M. Paraskevopoulos and Mercouri G. Kanatzidis, “Spinodal Decomposition and Nucleation and Growth as a Means to Bulk Nanostructured Thermoelectrics: Enhanced Performance in Pb1-xSnxTe−PbS,” J. Am. Chem. Soc., 129 (31), pp. 9780–9788, 2007.
[75]C. Uher, J. Yang, S. Hu, D. T. Morelli and G. P. Meisner, “Transport Properties of Pure and Doped MNiSn (M=Zr, Hf),” Phys. Rev. B, Vol. 59, No.13, pp.8615-8621, 1999.
[76]B. A. Cook and J. L. Harringa, “Electrical Properties of Some (1,1,1) Intermetallic Compounds,” Journal of Materials Science, Vol. 34, No.2, pp.323-327, 1999.
[77]Heinrich Hohl, Art P Ramirez, Claudia Goldmann, Gabriele Ernst, Bernd Wolfing and Ernst Bucher, “Efficient Dopants for ZrNiSn-Based Thermoelectric Materials,” J. Phys.: Condens. Matter 11, pp. 1697-1709, 1999.
[78]Slade R. Culp, S. Joseph Poon, Nicoleta Hickman, Terry M. Tritt and J. Blumm, “Effect of Substitutions on the Thermoelectric Figure of Merit of Half-Heusler Phases at 800 °C,” Appl. Phys. Lett. 88, pp.042106, 2006.
[79]Yoshisato Kimura and Hazuki Ueno, “Thermoelectric Properties of Directionally Solidified Half-Heusler (M 0.5a ,M 0.5b )NiSn (Ma, Mb = Hf, Zr, Ti) Alloys,” Yoshinao Mishima, Journal of Electronic Materials, Vol.38, No.7, pp.934-939, 2009.
[80]Naoki Shutoh and Shinya Sakurada, “Thermoelectric Properties of the TiX(Zr0.5Hf0.5)1−XNiSn Half-Heusler Compounds,” Journal of Alloys and Compounds, Vol. 389, Issues 1-2, pp.204-208, 2005.
[81]Cui Yu, Tie-Jun Zhu, Rui-Zhi Shi, Yun Zhang, Xin-Bing Zhao and Jian He, “High-Performance Half-Heusler Thermoelectric Materials Hf1−x ZrxNiSn1−ySby Prepared by Levitation Melting and Spark Plasma Sintering,” Acta Materialia Vol. 57, Issue 9, pp. 2757-2764, 2009.
[82]S. Bhattacharya, M. J. Skove, M. Russell, T. M. Tritt, Y. Xia, V. Ponnambalam, J. Poon and N. Thadhani, “Grain Structure and Thermal Transport Properties of TiNiSn1-xSbx and Ti1-yZryNiSn0.95Sb0.05 Half-Heusler Alloys,” Proceedings ICT 2005, pp. 355-359, 2005.
[83]S. Bhattacharya, M. J. Skove, M. Russell, T. M .Tritt, Y. Xia, V. Ponnambalam, S. J. Poon and N. Thadhani, “Effect of Boundary Scattering on the Thermal Conductivity of TiNiSn-based Half-Heusler Alloys,” Appl. Phys. Review B77, pp.184203-8, 2008.
[84]Sung-Wng Kim, Yoshisato Kimura and Yoshinao Mishima, “High Temperature Thermoelectric Properties of TiNiSn-based Half-Heusler Compounds,” Intermetallics,Vol.15, Issue 3, pp.349-356 , 2007.
[85]Y. Xia, V. Ponnambalam, S. Bhattacharya, A. L. Pope, S. J. Poon and T. M. Tritt, “Electrical Transport Properties of TiCoSb Half-Heusler Phases That Exhibit High Resistivity,”J. Phys.: Condense. Matter., Vol.13, No.1, pp.77, 2001.
[86]Slade R. Culp, J. W. Simonson, S. Joseph Poon, V. Ponnambalam, J. Edwards and Terry M. Tritt, “(Zr, Hf)Co(Sb,Sn) Half-Heusler Phases as High-Temperature (>700°C) p-type Thermoelectric Materials,” Appl. Phys. Lett. 93, pp. 022105- 022108, 2008.
[87]P. Amornpitoksuk and S. Suwanboon, “Correlation of Milling Time on Formation of TiCoSb Phase by Mechanical Alloying,” Journal of Alloys and Compounds Vol. 462, Issues 1-2, pp. 267-270, 2008.
[88]T. Sekimoto, K. Kurosaki, H. Muta and S. Yamanaka, “Thermoelectric Properties of (Ti, Zr) CoSnxSb1-x Half-Heusler Compounds,” ICT '06. 25th International Conference, pp.128 – 131, 2006.
[89]Takeyuki Sekimoto, Ken Kurosaki, Hiroaki Muta and Shinsuke Yamanaka, “Thermoelectric Properties of Sn-doped TiCoSb Half-Heusler Compounds,” Journal of Alloys and Compounds, Vol. 407, Issues 1-2, pp.326-329, 2006.
[90]Takeyuki Sekimoto, Ken Kurosaki, Hiroaki Muta and Shinsuke Yamanaka, “Annealing Effect on Thermoelectric Properties of TiCoSb Half-Heusler Compound,” Journal of Alloys and Compounds, Vol. 394, pp. 122-125, 2005.
[91]Do Youbg Jung, Ken Kurosaki, Hiroaki Muta and Shinsuke Yamanaka, “Thermal Expansion and Melting Temperature of the Half-Heusler Compounds: MNiSn (M=Ti, Zr, Hf),” Journal of Alloys and Compounds, Vol. 489, Issue 2, pp. 328-331, 2010.
[92]Ken Kurosaki, Takuji Maekawa, Hiroaki Muta and Shinsuke Yamanaka, “Effect of Spark Plasma Sintering Temperature on Thermoelectric Properties of (Ti,Zr,Hf)NiSn Half-Heusler Compounds,” Journal of Alloys and Compounds, Vol. 397, Issues 1-2, pp.296-299, 2005.
[93]Shigeru Katsuyama and Tetsuya Kobayashi, “Effect of Mechanical Milling on Thermoelectric Properties of Half-Heusler ZrNiSn0.98Sb0.02 Intermetallic Compound,” Materials Science and Engineering: B Vol.166, Issue 1, pp. 99-103, 2010.
[94]M. B. Tang and J. T. Zhao, “Low Temperature Transport and Thermal Properties of Half-Heusler alloy Zr0.25Hf0.25Ti0.5NiSn,” Journal of Alloys and Compounds, Vol.475, Issues 1-2, pp. 5-8, 2009.
[95]Minmin Zou, Jing Feng Li, Bing Du, Dawei, Liu and Takuji Kita, “Fabrication and Thermoelectric Properties of Fine-Grained TiNiSn Compounds,” Journal of Solid State Chemistry, 182, pp. 3138-3142, 2009.
[96]L. D. Chen, X. Y. Huang, M. Zhou, X. Shi and W. B. Zhang, “The High Temperature Thermoelectric Performances of Zr0.5Hf0.5Ni0.8Pd0.2Sn0.99Sb0.01 Alloy with Nanophase Inclusions,” J. Appl. Phys. 99, pp.064305-0643011, 2006.
[97]http://baike.steelhome.cn/uploads/200912/1260587617L1rKMsRc.jpg
[98]陳力俊,“電子顯微鏡發展沿革與未來”,科儀新知,第100期,第19卷,第2期,pp.105-109,1997。
[99]Terry M. Tritt and Valerie M. Browning, “Recent Trends in Thermoelectric Materials Research I, Semiconductors and Semimetals,” Vol. 69, edited by T. M. Tritt, New York, pp. 25-49, 2001.
[100]V. Ponnambalam, S. Lindsey, N. S. Hickman and Terry M. Tritt, “Sample probe to Measure Resistivity and Thermopower in the Temperature Range of 300–1000K,” Rev. Sci. Instrum. 77, pp. 073904- 073909, 2006.
[101]http://www.ulvac.com/thermal/zem%203.asp
[102]http://www.ulvac.com/thermal/tc9000.asp
[103]W. Jeitschko, “Transition Metal Stannides with MgAgAs and MnCu2Al Type Structure,” Metallurgical and Materials Transactions B, Vol. 1, Number 11, pp. 3159-3162, 1970.
[104]Taek-Soo Kim, Ik-Soo Kim, Taek Kyung Kim, Soon Jik Hong and Byong Sun Chun, “Thermoelectric properties of p-type 25%Bi2Te3+75%Sb2Te3 alloys manufactured by rapid solidification and hot pressing,” Materials Science and Engineering B, Volume 90, Issues 1-2, pp.42-46, 2002.
[105]Douglas T. Crane and Gregory S. Jackson, “Optimization of Cross Flow Heat Exchangers for Thermoelectric Waste Heat Recovery,” Energy Conversion and Management, Vol.45, Issues 9-10, pp.1565-1582, 2004.
[106]Bed Poudel, Qing Hao, Yi Ma, Yucheng Lan, Austin Minnich, Bo Yu, Xiao Yan, Dezhi Wang, Andrew Muto, Daryoosh Vashaee, Xiaoyuan Chen, Junming Liu, Mildred S. Dresselhaus, Gang Chen and Zhifeng Ren, “High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys,” Science, Vol. 320. No. 5876, pp. 634 – 638, 2008.
[107]Joseph P. Heremans, Christopher M. Thrush and Donald T. Morelli, “Thermopower Enhancement in Lead Telluride Nanostructures,” Phys. Rev. B 70, (11), pp. 5334-5339, 2004.
[108]Yi Ma, Qing Hao, Bed Poudel, Yucheng Lan, Bo Yu, Dezhi Wang, Gang Chen and Zhifeng Ren, “Enhanced Thermoelectric Figure-of-Merit in p-Type Nanostructured Bismuth Antimony Tellurium Alloys Made from Elemental Chunks,” Nano Lett., 8 (8), pp. 2580–2584, 2008.
[109]Th. Clin, S. Turenne, D. Vasilevskiy and R. A. Masut, “Numerical Simulation of the Thermomechanical Behavior of Extruded Bismuth Telluride Alloy Module,” Journal of electronic materials, Vol. 38, No. 7, pp. 994-1001, 2009.
[110]S. Turenne, Th. Clin, D. Vasilevskiy and R. A. Masut, “Finite Element Thermomechanical Modeling of Large Area Thermoelectric Generators based on Bismuth Telluride Alloys,” Journal of electronic materials, Vol.39, No.9, pp.1926-1933, 2010.
[111]Bongkyun Jang, Seungwoo Han and Jeong Yup Kim, “Optimal design for micro-thermoelectric generators using finite element analysis,” Microelectronic Engineering, doi:10.1016/j.mee., 2010.
[112]P. Ziolkowski, P. Poinas, J. Leszczynski, G. Karpinski and E. Müller, “Estimation of Thermoelectric Generator Performance by Finite Element Modeling,” Journal of Electronic Materials, Volume 39, Number 9, pp.1934-1943, 2010.
[113]H. J. Goldsmid, “A New Upper Limit to the Thermoelectric Figure of Merit,” in Thermoelectrics Handbook: Marco to Nano, edited by D. M. Rowe , CRC Press, Taylor and Francis Group, Florida, U.S.A., Ch. 10, pp. 1-8, 2006.
[114]H. J. Goldsmid, “Electronic Refrigeration,” Pion, London, pp.89, 1986.
[115]H. Scherrer and S. Scherrer, “Thermoelectric Properties of Bismuth Antimony Telluride Solid Solutions,” in Thermoelectrics Handbook: Marco to Nano, edited by D. M. Rowe, CRC Press, Taylor and Francis Group, Florida, U.S.A., Ch.27, pp.1-16, 2006.
[116]W. M. Yim and F. D. Rosi, “Compound tellurides and Their Alloys for Peltier Cooling-A Review,” Solid-State Electron., Vol. 16, No. 10, pp.1121-1140, 1972.
[117]M. H. Ettenberg, J. R. Maddux, P. J. Taylor, W. A. Jesser and F. D. Rosi, “Improving Yield and Performance in Pseudo-Ternary Thermoelectric Alloys (Bi2Te3)(Sb2Te3)(Sb2Se3),” J. Cryst. Growth, Vol. 179, Issues 3-4, pp. 495-502, 1997.
[118]T. E. Svechnikova, L. E. Shelimova, P. P. Konstantinov, M. A. Kretova, E. S. Avilov, V. S. Zemskov, C. Stiewe, A. Zuber and E. Müller, “Thermoelectric Properties of (Bi2Te3)1 − x − y(Sb2Te3)x(Sb2Se3)y Single Crystals,” Inorganic Materiaks, Vol. 41, No.10, pp.1043-1049, 2005.
[119]ANSYS, “Release 10.0 Documentation for ANSYS,” Pennsylvania, U.S.A.
[120]Q. Shen, L. Chen, T. Hirai, J. Yang, G. P. Meisner and C.Uher, “Effects of Partial Substitution of Ni by Pd on the Thermoelectric Properties of ZrNiSn-based Half-Heusler Compounds,” Appl. Phys. Lett. 79, pp. 4165, 2001.
[121]東芝株式會社,“熱電材料與熱電變換素子”,公開特許公報,日本國特許廰,特開2005-286229,2005。
[122]N. F. Mott and H. A. Jones, “The Theory of the Properties of Metals and Alloys,” Dover, New York, pp. 130, 1972.
[123]S. Bhattacharya, A. L. Pope, R. T. Littleton IV, Terry M. Tritt, V. Ponnambalam, Y. Xia and S. J. Poon, “Effect of Sb doping on the thermoelectric properties of Ti-based Half-Heusler compounds, TiNiSn1−xSbx,” Applied Physics letters Vol 77, No 13, pp.2476-2478, 2000.
[124]C. M. Bhandari., “Thermoelectric Transport Theory,” in Thermoelectrics Handbook: D. M. Rowe, CRC Press, Taylor and Francis Group, Florida, U.S.A., Ch.4, pp.1-30, 1995.
[125]http://www.3rd1000.com/elements/Niobium.htm
[126]http://www.3rd1000.com/elements/Tantalum.htm
[127]P. J. Lee, L. S. Chao and S. C. Tseng, “High-temperature thermoelectric properties of Tix(ZrHf)0.99−xV0.01Ni0.9Pd0.1 Sn0.99 Sb0.01 half-Heusler alloys,” J. Alloys Compd. Volume 496, Issues 1-2, pp. 620–623, 2010.
[128]Norihito Tareuchi, Kazushi Gosho, Masahiko Hiroi and Masayuki Kawakami, “The effect of V substitution on the properties of CoTiSb,” Physica B: Condensed Matter, Volumes 359-361, pp. 1183-1185, 2005.
[129]Tie-Jun Zhu, Yi-Qi Cao, Qian Zhang and Xin-Bing Zhao, “Bulk Nanostructured Thermoelectric Materials: Preparation, Structure and Properties,” J. Electron. Mater. Volume 39, Number 9, pp.1990-1995, 2009.
[130]Takeyuki Sekimoto, Ken Kurosaki, Hiroaki Muta and Shinsuke Yamanaka, “Thermoelectric and thermophysical properties of TiCoSb-ZrCoSb-HfCoSb pseudo ternary system prepared by spark plasma sintering,” Materials Transactions, Vol. 47 , No. 6 , pp.1445-1448, 2006.
[131]X. Y. Zhao, X. Shi, L. D. Chen, W. Q. Zhang, S. Q. Bai. Y. Z. Pei and X. Y. Li, “Synthesis of YbyCo4Sb12/Yb2O3 composites and their thermoelectric properties,” APL 89, pp.092121, 2006.
[132]Hai Li, Xin feng Tang, Qingjie Zhang and Ctirad Uher, “High performance InxCeyCo4Sb12 thermoelectric materials with in situ forming nanostructured InSb phase,”APL 94, pp.102114, 2009.
[133]Ting Wu, Wan Jiang, Xiaoya Li, Yanfei Zhou and Lidong Chen., “Thermoelectric properties of p-type Fe-doped TiCoSb Half-Heusler compounds,” J Appl. Phys., 102, pp.103705-5, 2007.
[134]Ting Wu, Wan Jiang, Xiaoya Li, Shengqiang Bai, Shengcong Liufu and Lindong Chen, “Effects of Ge doping on the thermoelectric properties of TiCoSb-based P type half-Hesuler compounds,” Journal of alloys and compounds, Volume 467, Issues 1-2, pp. 590-594, 2008.
[135]A. V. Morozkin and V. N. Nikiforov, “Thermoelectric properties of ScCoSb,ScNi0.86Sb and MgNiSb compounds,” Journal of alloys and compounds, Vol. 400, pp.62-66, 2005.
[136]Emil Sandoz Rosado and Robert Stevens, “Robust Finite Element Model for the Design of Thermoelectric Modules,” Journal of electric materials, Vol.39, No.9, pp.1848-1855, 2010.
[137]Takeyuki Sekimoto, Ken Kurosaki, Hiroaki Muta and Shinsuke Yamanaka,“High-Thermoelectric Figure of Merit Realized in p-Type Half-Heusler Compounds: ZrCoSnxSb1-x,” Japanese Journal of Applied Physics,Vol. 46, No. 27, pp. L673–L675, 2007.
[138]D. Vasilevskiy, M. S. Dawood, J. P. Masse, S. Turene and R. A. Masut, “Generation of Nanosized Particles during Mechanical Alloying and Their Evolution through the Hot Extrusion Process in Bismuth-Telluride-Based Alloys,” Journal of electric materials, Vol. 39, No. 9, pp. 1890-1896, 2010.
[139]Martin Jaegle, “Multiphysics Simulation of Thermoelectric Systems - Modeling of Peltier-Cooling and Thermoelectric Generation,” Except from the Proceeding of the COMSOL conference 2008 Hannover.
[140]Elena E. Antonova and David C. Looman, “Finite elements for thermoelectric device analysis in ANSYS,” pp. 215-218, 2005 international conference on thermoelectrics, 2005.
[141]D. M. Rowe and Gao Min, “Evaluation of thermoelectric modules for power generation,”Journal of Power Sources, Vol. 73, pp. 193-198, 1998.