| 研究生: |
紀貞耀 Kee, Chen-Yao |
|---|---|
| 論文名稱: |
群樁基礎裸露橋梁於近斷層地震作用之振動台實驗與分析研究 Shaking Table Test of Bridge with Scoured Pile Group subjected to Near Fault Earthquakes |
| 指導教授: |
劉光晏
Liu, Kuang-Yen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 257 |
| 中文關鍵詞: | 振動台試驗 、土壤結構互制 、沖刷裸露 、近斷層地震 、群樁效應 、土壤彈簧 |
| 外文關鍵詞: | Shaking table test, Soil-structure interaction, Scouring effect, Near fault earthquake, Group pile effect, Soil spring |
| 相關次數: | 點閱:136 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討群樁基礎橋柱模型受沖刷後導致基礎裸露於近斷層地震作用下之受震反應。試驗採用雙軸向大型柔性邊界剪力試驗盒與長衝程高速度地震模擬振動台,砂土採用乾砂,其相對密度約為50 %,結構模型為2 × 2群樁基礎單柱結構,並於單柱頂部設置1.2 t鋼板質量塊以模擬橋梁上部結構,結構第一模態週期約為0.5秒,試驗共分為3中不同裸露深度分別為無裸露群樁(0D)、3倍樁徑裸露群樁以及6倍樁徑裸露群樁(6D)。試驗輸入白噪音得到了結構的主要週期,並通過3種具代表性地震獲取結構反應,試驗結果經由加速度規,位移計以及應變計等進行量測,並通過量測數據分析探討結構的加速度、位移反應以及應變趨勢等,數值分析方面採用分別採用等值線性土壤彈簧與美國石油協會(API),並通過群樁振動台試驗進行比較與探討。
結果顯示隨著裸露深度增加,結構週期有延長趨勢,橋柱的應變極值,會隨著因裸露深度增加而降低,而群樁的應變極值位置會隨著裸露深度增加而改變,且大部分應變極值會出現在樁頂或3到12倍樁徑的位置,地震El Centro對結構造成影響比近斷層地震TCU068還大,主要與地表頻率內涵有關。數值分析則顯示採用API土壤彈簧與等值線性土壤彈簧(Proposed)在近斷層地震作用下對於質量塊加速度、位移歷時反應及基礎版加速度歷時反應皆有不錯的分析結果。
This study investigates the seismic response of a group pile foundation bridge model after scouring, which causes the foundation to be exposed during near-fault earthquakes. The test uses a Biaxial Shear Box and a Long stroke high-speed seismic simulation shaking table. The relative density of sand was about 50%. The specimen was a single pier structure supported by a 2 by 2 group. In total 1.2 tons of steel mass was placed on the top of the single column to simulate the superstructure of the bridge. The first modal period of the structure is about 0.5 seconds.
The scouring model fixed the specimen in the shear box and the model with a specified exposed length of pile foundation, as a ratio of pile diameter D, include no scour depth (0D) and 3 times scour depth (3D) and 6 times depth (6D). The experimental input white noise obtained the main period of the structure, and the structural response was obtained by three representative earthquakes. The test results were measured by acceleration gauge, displacement gauge and strain gauge, which were used to analysis the dynamic properties of the structure.
The results show that as the scour depth increases, the structural period has a tendency to increase. With the increase of scour depth, the maximum strain value of the bridge column will decrease, and the maximum strain value of pile will change position and transfer to another position. The maximum strain value will appear at the top of the pile or 3 to 12 times the diameter of the pile. The impact of the earthquake El Centro on the structure is larger than the near-fault earthquake TCU068, which is mainly related to the frequency content of the surface. Numerical analysis shows that the use of API soil springs and equivalent linear springs (Proposed) have good results in superstructure for near-fault earthquakes or general earthquakes.
[1] 經濟部中央地質調查所,活動斷層分佈圖,https://fault.moeacgs.gov.tw/ ,民國108年6月。
[2] 葉昭雄,何鴻文,「台灣地區橋梁損壞及養護問題之探討」,台灣公路工程,第二十九卷,第十一期,民國92年5月。
[3] Hardin, B.O. and Richart, F.E., Jr. “Elastic Wave Velocity in Granular Soils.’’ Journal of Soil Mechanic and Foundation Engineering Division, ASCE, Vol. 89, No. SM6,pp. 27-56, 1963.
[4] Seed HB, Idriss IM. “Soil Moduli and Damping Factors for Dynamic Response Analysis.” Report No. EERC 75-29, Earthquake Engineering Research Center, University of California, Berkeley, California 1970.
[5] 邱煌傑,「花蓮大比例尺模型地震試驗之地盤振動反應分析」,台灣大學土木工程學研究所碩士論文,民國85年。
[6] Luna, R. and H. Jadi. “Determination of Dynamic Soil Properties Using Geophysical Methods.” Proceedings of the First International Conference on the Application of Geophysical and NDT Methodologies to Transportation Facilities and Infrastructure, St. Louis, MO, pp. 1-3, 2000.
[7] 蔡益超,張荻薇,黃震興,周功台,張國鎮,宋裕祺,「公路橋梁耐震設計規範之補充研究」,交通部台灣區國道新建工程局,民國86年4月。
[8] 賴姿妤,「樁基礎沖刷橋梁模型之振動台試驗研究」,台灣大學土木工程學研究所碩士論文,民國100年6月。
[9] 王修駿,「橋梁受沖刷後之耐震行為研究」,台灣大學土木工程學研究所博士論文,民國103年12月。
[10] 陳正鴻,「樁基礎沖刷橋梁模型之振動台實驗分析研究」,台灣大學土木工程學研究所碩士論文,民國105年6月。
[11] Xiaowei Wang, Aijun Ye, Zhongying He and Yu Shang. “Quasi-Static Cyclic Testing of Elevated RC Pile-Cap Foudation for Bridge Structures.’’ American Society of Civil Engineers, 2015.
[12] 鄧爵明,「靜態側向反覆荷載下單柱式橋墩與群樁裸露基礎之研究」,台灣大學土木工程學研究所碩士論文,民國106年7月。
[13] 蔡旻諺,「應用等值線性土壤彈簧於基礎沖刷橋梁之實驗驗證」,成功大學土木工程學系碩士論文,民國107年6月。
[14] Tang Liang, Zhang Xiaoyu, Ling Xianzhang, Li Hui and Ju Nengpan. “Experimental and numerical investigation on the dynamic response of pile group in liquefying ground.’’ Earthquake Engineering and Engineering Vibration, 2016.
[15] Yu Shang, Alice Alipour, Aijun Ye. “Selection of Input Motion for Seismic Analysis of Scoured Pile-Supported Bridge with Simplified Models.’’ Journal of Structural Engineering, 2018.
[16] 張榮泰,「群樁基礎裸露橋柱之振動台試驗研究」,台灣科技大學營建工程系碩士論文,民國107年7月。
[17] American Petroleum Institute(API). “Recommended practice for planning, designing, and constructing fixed offshore platforms-work-ing stress design.” RP 2A-WSD, Washington, DC, 2000
[18] American Association of State and Highway Transportation Officials (AASHTO). “AASHTO LRFD Bridge Design Specifications.” 6th Edition. American Association of State Highway and Transportation Officials, Washington, DC, 2012.
[19] California Amendments to AASHTO LRFD Bridge Design Specifications - fourth edition, Page 10.84A.
[20] CSI Knowledge Base, Pile lateral support base on P-y curves (Soil-structure interaction)
https://wiki.csiamerica.com/, June, 2019.
[21] 財團法人國家實驗研究院,「第二實驗設施台南實驗室服務手冊」,國家地震工程研究中心,民國107年5月。
[22] 國家地震工程研究中心, 振動台, https://www.ncree.narl.org.tw/ ,民國108年6月
[23] C.H. Chen, G.C. Ting, W.K. Chang, and J.H. Hwang. “Development of a New Biaxial Shear Box for Shaking Table Tests Simulating Near-fault Earthquakes).” The 8th Japan-Taiwan Workshop on Geotechnical Hazards from Large Earthquakes and Heavy Rainfall, Paper No. TW15, Kyoto, Japan, October 24-2, 2018
[24] Goel RK. “Earthquake characteristics of bridges with integral abutments.’’ Journal of Structural Engineering, 123(11): 1435-1443, 1997.