簡易檢索 / 詳目顯示

研究生: 陳冠中
Chen, Kuan-Chung
論文名稱: 影像伺服控制於移動物體動態追蹤與辨識之研究
The Study on Visual Servo Control for Dynamic Pursuit and Recognition for a Moving Target
指導教授: 田思齊
Tien, Szu-Chi
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 110
中文關鍵詞: 影像伺服控制動態追蹤樣版比對動態輪廓模型卡曼濾波器
外文關鍵詞: visual servo control, dynamic persuit, template matching, active contour model, Kalman filter
相關次數: 點閱:112下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以追蹤車牌與辨識為例,建立一個基於影像伺服控制
    之移動物動態追蹤與辨識的系統。此系統在相機與鏡頭於追蹤移
    動目標物的同時能放大影像並自動聚焦,擷取清晰影像後進行車
    牌字元辨識。影像偵測方法上,我們利用樣版比對持續偵測目標
    物在影像中的位置,並藉由動態輪廓模型更新因鏡頭放大而變形
    的目標物樣版。另外,為使影像清晰,本系統建立一以影像處理
    為基礎的自動聚焦功能。在控制方法上,利用卡曼濾波器預測下
    一刻目標物的位置,以補償影像回授造成的追蹤延遲,使整體追
    蹤時的位置誤差降低。且藉由卡曼濾波器參數的選擇,確保追蹤
    的速度誤差符合能擷取清晰車牌字元的攝像標準。整體程序包含
    影像處理、鏡頭焦距與焦段的移動、相機的位置控制,可在相機
    中斷(亦即20幀/秒)內完成。實驗結果顯示,運用本論文建議之方
    法可提升追蹤移動車牌的性能,並準確地辨識此車牌字元。

    In this study, a visual servo control system for dynamic pursuit and recogni-
    tion for a moving target is established and verified with a car-license-plate exam-
    ple. During the entire process, the image of a moving car-license-plate is tracked,
    zoomed in, auto-focused, and then captured for recognition. For image process-
    ing, template matching method is utilized to detect the position of the moving
    car-license- plate, and active contour model is used to update the enlarged tar-
    get template as the lens starts zooming in. Besides, an auto focusing function
    based on image processing is established to keep images sharp. As for control
    algorithms, Kalman filter is used to predict the target position for compensating
    for time-delay caused by image processing and reducing tracking errors. In order
    to guarantee tracking velocity errors satisfy the criterion for capturing a sharp
    image, suitable parameters of Kalman filter are chosen based on simulation. It is
    noted that, the overall process consisting of image processing, zooming in, focusing
    and position control can be done in 0.05 seconds (i.e., 20 frames/s). Experimental
    result shows that, with proposed methods, tracking performance can be improved
    and characters on the car license plate can be recognized.

    圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 符號表. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 第一章緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 第二章影像偵測移動物與辨識. . . . . . . . . . . . . . . . . . . . . . . . . 14 2.1 鎖定移動目標物. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1.1 運動能量法. . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1.2 樣版比對法. . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 持續追蹤目標物. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.1 自動聚焦. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.2 動態輪廓模型. . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3 影像辨識. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3.1 影像前處理. . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.3.2 特徵擷取與辨識. . . . . . . . . . . . . . . . . . . . . . . . . 41 第三章影像伺服控制. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.1 控制器設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2 微分估測器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3 卡曼濾波器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 第四章實驗設備與架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.1 硬體. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.2 軟體. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 i 第五章實驗與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.1 動態影像實驗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.1.1 鎖定移動目標物. . . . . . . . . . . . . . . . . . . . . . . . . 77 5.1.2 自動聚焦實驗. . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.1.3 持續追蹤目標物. . . . . . . . . . . . . . . . . . . . . . . . . 82 5.2 影像伺服追蹤實驗. . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.2.1 追蹤路徑設計. . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.2.2 卡曼濾波器模擬. . . . . . . . . . . . . . . . . . . . . . . . . 88 5.2.3 追蹤實驗. . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.3 影像辨識實驗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5.4 討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 第六章結論與未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 6.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 6.2 未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 附錄A H橋電路. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 附錄B 卡曼濾波器模型離散化推導. . . . . . . . . . . . . . . . . . . . . . 108

    [1] P. Shirkey R. Kelly and M. W. Spong. Fixed-camera visual servo control for
    planar robots. In Proceedings of the 1996 IEEE Intemational Conference on
    Rcbotics and Automation, pages 2643–2649. IEEE, 1996.
    [2] J.S Farrokh and W. J. Wilson. Automatic grasp planning for visual-servo
    controlled robotic manipulators. IEEE Transactions on System, Man, and
    Cybernetics, 28(5):557–573, 1998.
    [3] K. Benameurz and P. R. Belangert. Grasping of a moving object with a
    robotic hand-eye system. In Proceedings of the 1998 IEEE/RSJ Intl. Confer-
    ence on Intelligent Robots and Systems, pages 304–310. IEEE, 1998.
    [4] G. Chesi and K. Hashimoto. Visual Servoing via Advanced Numerical Meth-
    ods. Springer, 2010.
    [5] D. M. Dawson J. Chen, W. E. Dixon and M. McIntyre. Homography-based
    visual servo tracking control of a wheeled mobile robot. IEEE Transactions
    on Robotics, 22(2):406–415, 2006.
    [6] Z. Ceren and E. Altug. Vision-based servo control of a quadrotor air vehicle.
    IEEE International Symposium on Computational Intelligence in Robotics
    and Automation, pages 84–89, 2009.
    [7] M. A. Turk and A. P. Pentland. Face recognition using eigenfaces. Computer
    Vision and Pattern Recognition, pages 586–591, 1991.
    [8] M.A Qatran. Template matching method for recognition musnad characters
    based on correlation analysis. ACIT’2011 Proceedings, 2011.
    [9] P.M. Sharkey and D.W. Murray. Delay versus performance of visually guided
    systems. In IEE Proceedings-Control Theory Application, pages 436–447,
    1996.
    [10] C.K. Wang. Design and implementation of a multi-purpose real-time vi-
    sual tracking system based on modified adaptive background substration and
    multi-cue template matching. Master’s thesis, National Cheng Kung Univer-
    sity, 2004.
    103
    [11] P. Anandan. Measuring visual motion from image sequences. University of
    Massachusetts Amherst, 1987.
    [12] L.G Chen H.M Jong and T.D Chiueh. Parallel architectures for 3-step hier-
    archical search block-matching algorithm. IEEE Transctions on Circuits and
    System for Video Technology, 4(4):407–416, 1994.
    [13] F. Leymarie and M.D. Levine. Tracking deformable objects in the plane
    using an active contour model. IEEE Transactions on Pattern Analysis and
    Machine Intelligence, 15(6):617–634, 1993.
    [14] K.M. Lam and H.Yan. Fast greedy algorithm for active contours. Electronics
    Letters, 30(1):21–23, 1994.
    [15] Y.C Chien. Stochastic resonance in visual manipulation of micro particles.
    Master’s thesis, National Cheng Kung University, 2013.
    [16] H. Araujo J. P. Barreto, J. Batista. Solution for visual control of motion:
    Active tracking applications. In Proceedings of the 8th IEEE Mediterranean
    Conference on Control and Automation, 2000.
    [17] G.V. McMurray J.A. Piepmeier and H. Lipkin. Tracking a moving target with
    model independent visual servoing: a predictive estimation approach. In Pro-
    ceedings. 1998 IEEE International Conference on Robotics and Automation,
    pages 2652–2657. IEEE, 1998.
    [18] J.L Lai. A study on visual detection and tracking of moving targets. Master’s
    thesis, National Cheng Kung University, 2013.
    [19] E. Brookner. Tracking and Kalman Filtering Made Easy. New York:John
    Wiley and Sons, 1998.
    [20] T.P. Ojala and D.M. Harwood. Performance evaluation of texture measures
    with classification based on kullback discrimination of distributions. In Pro-
    ceedings of the 12th IAPR International Conference on Pattern Recognition,
    volume 1, pages 582–585, 1994.
    [21] P.Y Chen. A robust visual servo system for tracking an arbitrary-shaped
    object by a new active contour method. Master’s thesis, National Taiwan
    University, 2003.
    [22] Jayasooriah T.T.E. Yea, S.H. Ong and R. Sinniah. Autofocusing for tissue
    microscopy. Image and Vision Computing, 11:629–639, 1993.
    [23] R.C. Gonzalez and R.E. Woods. Digital Image Processing. Upper Saddle
    River, 2008.
    104
    [24] D. Terzopoulos M. Kass, A. Witkin. Snakes: Active contour models. Inter-
    national Journal of Computer Vision, 1:321–331, 1987.
    [25] D.J.Williams and M. Shah. A fast algorithm for active contours and curvature
    estimation. CVGIP:Image Understanding, 55:14–26, 1992.
    [26] Y.K. Liao. Study on characteristic recognition in fly vision for automatic
    inspection systems. Master’s thesis, National Cheng Kung University, 2014.
    [27] W. T. Vetterling W. H. Press, S. A. Teukolsky and B. P. Flannery. Numer-
    ical recipes in FORTRAN 77 : the art of scientific computing. Cambridge
    University Press, 1992.
    [28] N. Otsu. A threshold selection method from gray-level histograms. IEEE
    Trans. Sys., Man., 9(1):62–66, 1979.
    [29] X. Huadong and L. Dongchu. The study of license plate character segmen-
    tation algorithm based on vetical projection. IEEE Computer Society, pages
    4583–4586. International Conference on Consumer Electronics, 2011.
    [30] A. Jangwanitlert S. Kaitwanidvilai and A. Saenthon. Smart “on the fly vision”
    for smart manufacturing inspection system. Proceedings of the IASTED Asian
    Conference on Power and Energy Systems, AsiaPES, pages 232–235. Acta
    Press, 2012.
    [31] M.A. Qatran. Template matching method for recognition musnad characters
    based on correlation analysis. ACIT’2011 Proceedings, 2011.
    [32] J. Xie. Optical character recognition based on least square support vector
    machine. 3rd International Symposium on Intelligent Information Technology
    Application, 1:626–629, 2009.
    [33] K. Fukushima. Character recognition with neural networks. Neurocomputing,
    4(5):221–233, 1992.
    [34] J. Y. Stein. Digital Signal Processing: A Computer Science Perspective. John
    Wiley and Sons, USA, 2000.
    [35] X.W. Lin. Model-fusion-based precision motion control of linear motors. Mas-
    ter’s thesis, National Cheng Kung University, 2013.
    [36] Y.J. Li. Precision motion control of linear motor with nonlinear friction
    phenomena compensation. Master’s thesis, National Cheng Kung University,
    2010.
    105
    [37] K. Astrom and T. Hagglund. PID Controller: Theory, Design and Tuning.
    Instrument Society of America, USA, 1995.
    [38] U.A. Bakshi and V. Bakshi. Modern Control Theory. Technical Publications,
    2009.
    [39] S.C. Schneider R.H. Brown and M.G. Mulligan. Analysis of algorithms for ve-
    locity estimation from discrete position versus time data. IEEE Transactions
    on Industrial Electronics, 39(1):11–19, 1992.
    [40] G. Welch and G. Bishop. An introduction to the kalman filter, 1995.
    [41] R. G. Brown and P. Y.C. Hwang. Introduction to Random Signals and Applied
    Kalman Filtering: with Matlab Exercises and Solutions. JohnWiley and Sons,
    1997.
    [42] P. Zarchan and H. Musoff. Fundamentals of Kalman Filtering: A Practical
    Approach. American Institute of Aeronautics and Astronautics, 2009.
    [43] B. P. Gibbs. Advanced Kalman Filtering, Least-Squares and Modeling. John
    Wiley and Sons, 2011.

    下載圖示 校內:2017-06-23公開
    校外:2017-06-23公開
    QR CODE