簡易檢索 / 詳目顯示

研究生: 李昱璋
Li, Yu-Chang
論文名稱: 介面修飾層對於高分子電晶體及五環素電晶體之影響
Influence of Interfacial Modification Layer on Both Conjugated Polymer- and Pentacene-based Organic Thin Film Transistors
指導教授: 王永和
Wang, Yeong-Her
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 109
中文關鍵詞: 有機薄膜電晶體共軛高分子高分子電解質雙層絕緣層結構修飾層碳六十
外文關鍵詞: Organic thin film transistor (OTFT), Conjugated polymer, Polymer electrolyte, double polymer dielectric layer, modification layer, C60
相關次數: 點閱:147下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要在於以修飾層加入有機薄膜電晶體,使得電晶體的電性表現有明顯的改善。而以下針對高分子及小分子電晶體所加入的修飾層所做的改善來做說明:
    首先我們以PANI-CSA為主要的有機半導體層並以PEI為高分子電解質修飾層,來形成複合式高分子層來做為通道,以達成空乏型電晶體特性表現。實驗發現,若沒有PEI的加入,則PANI-CSA電晶體表現有如一個電阻,完全沒有電晶體特性。若有PEI電解質的加入,則元件則表現就空乏型電晶體的電性特徵。這是由於在閘極電場作用力下,PEI中的銨根離子能夠坎入高分子PANI-CSA主動層,使得主動層的硫酸根離子被迫和銨根離子做結合,進而達到介面修飾的目的,並因而調變電流。但PANI-CSA空乏型電晶體是屬於p型電晶體,為了能更進一步將有機薄膜電晶體應用到互補金屬氧化物半導體(Complementary Metal Oxide Semiconductor) (CMOS),我們另外研發了另外一種雙極性電晶體。其原理是利用離子的幫助來達成電化學摻雜的方式並以修飾層來修飾主動層和絕緣層間的介面性質,可以使得polyaniline-poly (styrene sulfonic acid) (PANI-PSS)電晶體能夠展現出雙極性的電晶體特性。和沒有用介面修飾層的PANI-PSS電晶體相比,其電洞遷移率 (hole mobility)可以從0.65 增加到 3.36 cm2/ Vs且 電子遷移率 (electron mobility) 也有1.19cm2/Vs的水平。 但在電晶體在量測過程中,常有發生電流直接達到儀器上限的現象,經查驗數據後,其限流發生的原因為漏電流所致。也就是說,其元件的不穏定是由於絕緣層的的絕緣效果不穩定所導致。在我們用掃描電子顯微鏡(scanning electron microscope)(SEM) 去觀察所旋塗的高分子絕緣層後發現,有不規則的裂隙及一些表面破碎現象會在絕緣層表面發生。我們推測這是在加熱處理的過程中,雖然未交聯的高分子絕緣層能夠因溫度而產生交聯加強了絕緣層的強度,但也因加熱使得高分子和基板的熱膨脹係數不同而有熱應力產生,並產生了表面破碎及裂隙的現象。為了試著去改善絕緣層品質,我們以五環素(pentacene)小分子有機半導體為主動層,並以雙層(未交聯/交聯)的複合結構來取代單層絕緣層,一方面可以強化絕緣層的絕緣能力,另一方則將上層未交聯的絕緣層來當作表面修飾層改善元件特性。實驗結果顯示,在用了雙層絕緣層的結構後,用SEM去觀察絕緣層表面,因上層絕緣層修補的效果,表面幾乎找不到裂隙,這也許可以說明為什麼雙層結構的漏電流特性會比單層的絕緣層好上10倍以上。並且上層未交聯的絕緣層提供較低的表面能,使得五環素(pentacene)薄膜有較好的表面型態及較大的結晶區域,並得到電性較好及較為穏定的電晶體特性。
    針對改善元件特性部分,除了改善絕緣層的電性外,還有比較常用的二種方式分別為增進載子從源/汲極注入的效率及改善主動層薄膜成長的品質。對於進載子從源/汲極注入的效率方面,我們提出以極薄的碳六十層來修飾銦鍚氧化物(ITO) 源/汲電極(source/drain electrode)和五環素的介面,其目的除了能夠製作出透明電晶體外,還可以有效增進透明電晶體的遷移率約四倍。實驗結果証實,碳六十層的加入可以有效的修飾ITO電極的表面功函數(workfuction),使得ITO表面功函數從原本的4.77eV,可以調變到5.15eV。經由選用適當的C60厚度,我們可以大幅度的降低源/汲電極和主動層間的接面能障,進而增加載子的注入效率。實驗也發現,即使加入了3.5奈米厚度的碳六十層,元件在可見光範圍的穿透率仍有62.98%的效率,以透明電晶體來說,是足夠了。而對於改善主動層五環素薄膜品質而言,我們在五環素層間穿插了極薄的碳六十修飾層,而加入的目的是要使得較低厚的五環素層能有比較平坦的表面,這可以使得接下來的五環素分子能有機會再以比較小的傾斜角(分子跟垂直基板的角度)成膜在基板上,造成比較好的主動層品質。也就是說,極薄的碳六十修飾層的加入,可以延遲相轉變的發生厚度,使得五環素主動層的薄膜結構能夠盡量一致且均勻,進而改善了主動層的結晶度及五環素分子間的交互作用力,因而改善元件的載子遷移率達六倍之多。

    In this study, research on application of modification layer in both conjugated polymer and small molecule in organic thin film transistors was presented. For the polymer-based OTFTs, a depletion-mode polymer transistor with the composite channel structure consisting of polymer electrolyte poly(ethyleneimine) (PEI) modification layer and active material polyaniline-camphor sulfonic acid (PANI-CSA) was proposed. From the experimental results observed, the PANI-CSA device without the electrolyte PEI exhibits a resistor behavior. With the insertion of the PEI electrolyte layer between poly-4-vinylphenol (PVP) polymer dielectric and PANI-CSA, the device behaves as a transistor working in depletion mode. This is due to the NH3+ cations of PEI stuffed into PANI-CSA to compensate the SO3- anions of PANI-CSA, thereby resulting in dedoping process and current modulation by applying gate voltage. However, PANI-CSA OTFTs only exhibit p-type transistor behavior. To further simplify the design of organic complementary metal oxide semiconductor (CMOS) integrated circuit, the ambipolar transistor through the ion-assisted electrochemical doping mechanism and poly(vinyl alcohol) (PVA) surface modification layer was proposed. With PVA modification layer, the OTFT with polyaniline-poly (styrene sulfonic acid) (PANI-PSS) as active layer exhibit the obvious ambipolar transistor characteristics. The hole and electron mobility of PANI-PSS OTFTs is 3.36 and 1.19 cm2/Vs respectively. Although the polymer-based OTFTs have been demonstrated, the electrical characteristic is not always stable during the device operation. Sometimes, the devices show the undesired output characteristic or even breakdown directly. After tracing the data obtained from the instrument, we find the unstable characteristics or breakdown phenomenon result from the high leakage current due to the unreliable insulator property. From the scanning electron microscope (SEM) results, some cracks and valleys existed on the surface of PVP dielectric. To solve this problem, dual-layer non-cross-linked PVP (NCPVP)/cross-linked PVP (CPVP) dielectrics structure was applied to small molecule pentacene-based OTFTs. The NCPVP/CPCP specific structure could not only strengthen the polymer insulator property but also modify the surface energy to facilitate the deposition of pentacene film. The experimental results suggest that the leakage current of the device with dual-layer NCPVP/CPVP dielectrics can be improved at least one order magnitude smaller than that with a single-layer CPVP, which may be ascribed to the reduction of cracks and valleys generated during the thermal treatment process. Besides, the lower surface energy on the surface of dual-layer polymer dielectrics results in better pentacene film morphology and larger crystalline size, contributing to better output characteristics and more stable properties of OTFTs. Another two effective ways to improve device performance are also presented. One is to enhance the injection efficiency from source/drain to active layer; another is to improve active film quality. In the former, ITO/C60 source/drain contact applied in transparent organic thin-film transistors could resulting in the increased mobility by more than four times as compare to the device with ITO electrode only. The experimental results suggest the introduction of C60 layer could modify the work function of ITO, contributing to the barrier lowering of the S/D contacts. Even after the introduction of the 3.5nm-thick C60 layer, the average transmittance of the device in the visible region could remain at 62.98%. In the latter, sandwich structure pentacene/C60/pentacene was applied in the active channel layer. The introduction of ultra-thin C60 modification layer could smooth the surface on the lower pentacene film, facilitating the deposition of pentacene molecules in a smaller tilt angle (the angle between pentacene molecule and normal vector of the substrate). This will delay phase transformation in pentacene film and result in the higher order active film structure, contributing to the stronger intermolecular coupling and, therefore, to improved device performance by more than six times.

    Abstrate (Chinese)……………………………………I Abstrate (English)………………………………IV 誌謝………………………………………VII Contents……………………………………………………IX Figure captions…………………………XIII Table captions………………………………XVIII Contents Chapter 1 Introduction......................................... 1 1.1 Organic Semiconductor............................................. 2 1.1.1 Formation of π Electrons and π System........................................... 3 1.1.2 Charge transport.......................... 6 1.2 Organic Thin Film Transistor .......................................... 8 1.2.1 The Development of Organic Thin Film Transistor ............ 8 1.2.2 Basic device operation ............................................... 9 1.2.3 Critical parameters of OTFTs ............................................ 11 1.3 Motivation............................................ 13 1.3.1 Polymer-Based Organic Thin Film Transistors ................................ 13 1.3.2 Small Molecular Based Organic Thin Film Transistors ................... 14 Chapter 2 Ion-modulated Electrical Conduction in Polyaniline-based Field-effect Transistors..................................... 16 X 2.1 Doping process of conjugated polymer ............................ 16 2.2 The Electrolytes/Conjugated polymer and Fabrication of Depletion-Mode OTFTs Based on PEI/PANI-CSA .... 18 2.3 Current-Voltage Characteristics and Doping-Dedoping mechanism.......................................... 21 2.4 Summary ........................... 26 Chapter 3 Ambipolar Characteristics of Polyaniline-poly (styrene sulfonic acid)-based Organic Thin Film Transistor via Interface Modification................................ 27 3.1 Characteristics of polyaniline-poly(styrene sulfonic acid), poly(vinyl phenol) and poly(vinyl alcohol) .... 29 3.2 The Fabrication of Ambipolar OTFTs Based on PVP/PVA/PANI-PSS....... 30 3.3 Device Performance.................................... 33 3.4 XRD and UV-VIS Results ......................36 3.5 An Explanation for the Device Performance Improvement....... 38 3.6 Summary .......................... 40 Chapter 4 Performance Enhancement in Pentacene Thin Film Transistors with Dual-Layer Polymer Gate Dielectrics........................................... 41 4.1 Researches on Polymer dielectrics....................... 42 4.2 The Polymer Dielectrics Property and Fabrication of OTFTs with Dual-Layer Structure.................................. 44 4.3 Correlation between Leakage current and Cracks on polymer dielectrics ............................ 47 4.4 Surface energy and morphology on polymer dielectrics ............................. 51 XI 4.5 X-Ray diffraction pattern ............................... 53 4.6 Current-Voltage Characteristics.................... 55 4.7 Summary.............57 Chapter 5 Performance improvement in transparent organic thin-film transistors with indium tin oxide/fullerene source/drain contact ........................... 58 5.1 Transparent OTFTs ................................... 58 5.2 The Fabrication of Transparent OTFT Based on Pentacene....... 60 5.3 Work Function Modulation and Carriers tunneling in ITO/C60/pentacene Structure ................ 63 5.3.1 Current-Voltage Characteristics........63 5.3.2 Transmission Line Method and Contact Resistance......................... 65 5.3.3 Work Function Modification in ITO/C60/pentacene Structure ........... 66 5.3.4 The Performance and Transmittance Spectra of Device................... 69 5.4 Summary .................................. 71 Chapter 6 Influence of inserting a Thin Fullerene Layer on Pentacene Organic Thin-Film Transistor .................................... 72 6.1 Channel layer with Pentacene/C60/pentacene sandwich film structure.............................. 73 6.2 The Fabrication of Pentacene/C60/Pentacene OTFT ............................. 74 6.3 Device Performance................................ 77 6.4 Transmission Line Method, X-ray diffraction pattern, Atomic Force microscope and Raman spectra........... 80 6.4.1 Transmission Line Method and Contact Resistance......................... 80 XII 6.4.2 X-Ray diffraction and pentacene molecule orientation .................... 82 6.4.3 Atomic Force microscope ................. 85 6.4.4 Raman Spectra and intermolecular coupling properties ..... 87 6.5 An Explanation for the Improvement On device Performance............... 89 6.6 Summary ............................... 91 Chapter 7 Conclusions and Future Works.......... 92 References…………………………………………………….....95 Publication List ............................... 108

    [1] S. M. Sze, Physics of Semiconductor Devices, 2nd ed., p. 133. New York: Wiley, 1985.
    [2] C.K. Chiang, C.R. Fincher, J.Y.W. Parker, A.J. Heeger, H. Shirakawa, E. J. Louis, S.C. GAU, and A.G. MacDiarmid, “Electrical Conductivity in Doped Polyacetylene,' Phys. Rev. Lett., vol. 39, no. 17, pp. 1098-1101 Oct. 1977.
    [3] R. M. Meixner, H. Göbel, F. A. Yildirim, W. Bauhofer, and W. Krautschneider, “Wavelength-selective organic field-effect phototransistors based on dye-doped poly-3-hexylthiophene,” Appl. Phys. Lett., vol. 89, no. 9, p. 092110, Aug. 2006.
    [4] D. Guo, K. Sakamoto, K. Miki, S. Ikeda, and K. Saiki, “Orientation control of pentacene molecules and transport anisotropy of the thin film transistors by photoaligned polyimide film,” Appl. Phys. Lett., vol. 90, no. 10, p. 102117, Mar. 2007.
    [5] M. Hamedi, R. Forchheimer and O. Ingana, “Towards woven logic from organic electronic fibres,” Nat. Mater., vol. 6, no. 5, pp. 357-362, Apr. 2007.
    [6] J. C. Scott and G. G. Malliaras, In conjugated polymers, Germany: Wiley-VCH, 1999.
    [7] J.M. Nunzi, ”Organic photovoltaic materials and devices,” C.R. Phys., vol. 3, no. 4, pp. 523-542, Mar. 2002.
    [8] B.A. Gregg, “Excitonic Solar Cells,” J.Phys.Chem. B., vol. 107, no. 20, pp. 4688-4698, May. 2003.
    [9] H. Klauk, M. Halik, U. Zschieschang, G. Schmid, W. Radlik, and W. Weber, “High-mobility polymer gate dielectric pentacene thin film transistors,” J. Appl. Phys. vol. 92, no. 9, pp. 5259-5263, Aug. 2002.
    [10] Z. Shen, P. E. Burrows, V. Bulovic´, S. R. Forrest, M. E. Thompson, “Three-Color, Tunable, Organic Light-Emitting Devices,” Science vol. 276, no. 5321, pp. 2009-2011, May. 1997.
    [11] C. J. Drury, C. M. J. Mutsaers, C. M. Hart, M. Matters, and D. M. de Leeuw, “Low-cost all-polymer integrated circuits,” Appl. Phys. Lett. vol. 73, no. 1, pp. 108-110, May. 1998.
    [12] Ioannis Kymissis, Organic Field Effect: Transistors Theory, Fabrication and Characterization, p.7. New York: Springer press, 2009.
    [13] Z. Bao, J. Locklin, and J. J. Locklin, Organic Field-effect Transistors, p.46. New York: Taylor and Francis, 2007.
    [14] C. D. Dimitrakopolulos and D. J. Mascaro, “Organic thin film transistor: A review of recent advances,” IBM J. Res. Develop., vol. 45, no. 1, pp. 11-28, Jan. 2001.
    [15] J. M. Shaw, and P. F. Seidler, “Organic electrionics: Introduction,” IBM J. Res. Develop., vol. 45, no. 1, pp. 3-10, Jan. 2001.
    [16] J. Zhang, J. Wang, H. Wang and D. Yan, “Organic thin-film transistors in sandwich configuration,” Appl. Phys. Lett., vol. 84, no. 1, pp. 142-144, Jan. 2004.
    [17] U. Zschieschang, H. Klauk, M. Halik, G. Schmid and C. Dehm, “Flexible organic circuit with printed gate electrodes,” Adv. Mater., vol. 15, no. 14, pp. 1147-1151, Jul. 2003.

    [18] M. Pope and C.E. Swenberg, Electronic Processes in Organic Crystals and Polymers, New York: Oxford University Press, 1999.
    [19] F. Ebisawa, T. Kurokawa, and S. Nara, “Electrical properties of polyacetylene/polysiloxane interface,” J. Appl. Phys. vol. 54, no. 6, pp. 3255-3259, Jun. 1983.
    [20] A. Tsumura, K. Koezuka, and T. Ando, “Macromolecular electronic device Field-effect transistor with a polythiophene thin film,” Appl. Phys. Lett., vol. 49, no. 18, pp. 1210-1212, Nov. 1986.
    [21] G. Horowitz, D. Fichou, X. Z. Peng, Z. G. Xu, F. Garnier, “A field-effect transistor based on conjugated alpha-sexithienyl,” Solid State Commun., vol. 72, no. 4, pp. 381-384, Mar. 1989.
    [22] H. E. Katz, “Organic molecular solids as thin film transistor semiconductors,” J. Mater. Chem., vol. 7, no. 3, pp. 369-376, July 1997.
    [23] C. D. Dimitrakopoulos, and P. R. L. Malenfant, “Organic thin film transistors for large area electronics,” Adv. Mater., vol. 14, no. 2, pp. 99-117, Jan. 2002.
    [24] J. A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V. R. Raju, V. Kuck, H. E. Katz, K. Amundson, J. Ewing, and P. Drzaic, “Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks,” Proc. Nat. Acad. Sci. vol. 98, no. 9, pp. 4835-4840, Apr. 2001.
    [25] C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, T. N. Jackson, M. G. Kane, I. G. Hill, M. S. Hammond, J. Campi, B. K. Greening, J. Francl, J. West, “Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates,” Appl. Phys. Lett., vol. 80, no. 6, pp. 1088-1090, Feb. 2002.
    [26] Z. T. Zhu, J. T. Mason, R. Dieckmann, and G. G. Malliaras, “Humidity sensors based on pentacene thin film transistors,” Appl. Phys. Lett. vol. 81, no. 24, pp. 4643-4645, Dec. 2002.
    [27] B.K. Crone, A. Dodabalapur, R. Sarpeshkar, A. Gelperin, H.E. Katz, Z. Bao, “Organic oscillator and adaptive amplifier circuit for chemical vapor sensing,” J. Appl. Phys. vol. 91, no. 12, pp. 10140-10146, Jun. 2002.
    [28] D. Gamota, P. Brazis, K. Kalyanasundaram, and J. Zhang, Printed Organic and Molecular Electronics, p.7. New York: Springer press, 2004.
    [29] M. G. Kanatzidis, “conductive polymers,” Chem. Eng. News, vol. 68, no. 49, pp. 36-54, Dec. 1990.
    [30] F. M. Gray, Solid Polymer Electrolytes: Fundamentals and Technological Applications, New York: VCH Publications, 1991.
    [31] T. T. Wooster, M. L. Longmire, H. Zhang, M. Watanabe, and R. W. Murray, “Experimental aspects of solid-state voltammetry,” Anal. Chem., vol. 64, no. 10, pp.1132-1140, May 1992.
    [32] S. Chao, and M. S. Wrighton, “Solid-state microelectrochemistry: electrical characteristics of a solid-state microelectrochemical transistor based on Poly(3-methylthiophene),” J. Am. Chem. Soc., vol. 109, no. 7, pp.2197-2199, Apr. 1987.
    [33] D. R. Talham, R. M. Crooks, V. Cammarata, N. Leventis, M. O. Schloh, and M. S. Wrighton, NATO ASI Ser., Ser. B 248, 627, 1990.
    [34] H. Benisty, and J. N. Chazalviel, “Electrochemical field effect as a probe of double-layer dynamics,” J. Electrochem. Soc., vol. 140, no. 7, pp.1949-1955, Jul. 1993.
    [35] C. Lu, Q. Fu, S. Huang, and J. Liu, “Polymer electrolyte-gated carbon nanotube field-effect transistor,” Nano Lett., vol. 4, no. 4, pp. 623-627, Mar. 2004.
    [36] G. P. Siddons, D. Merchin, J. H. Back, J. K. Jeong, and M. Shim, “Highly efficient gating and doping of carbon nanotubes with polymer electrolytes,” Nano Lett., vol. 4, no. 5, pp.927-931, Apr. 2004.
    [37] M. J. Panzer, C. R. Newman, and C. D. Frisbie, “Low-voltage operation of a pentacene field-effect transistor with a polymer electrolyte gate dielectric,” Appl. Phys. Lett., vol. 86, no. 10, p.103503, Feb. 2005.
    [38] Y. J. Lin, Y. C. Li, C. C. Yeh, S. F. Chung, L. M. Huang, T. C. Wen and Y. H. Wang, “Organic thin film transistor by using polymer electrolyte to modulate the conductivity of conjugated polymer,” Appl. Phys. Lett. vol. 89, no. 12, p.223518, Dec. 2006.
    [39] Y. Yang, A. J. Heeger, “Polyaniline as a transparent electrode for polymer light‐emitting diodes: Lower operating voltage and higher efficiency,” Appl. Phys. Lett., vol. 64, no. 10, pp.1245-1247, Jan. 1994.
    [40] E.J. Meijer, D.M. de Leeuw, S. Setayesh, E. Van Veenendaal, B.H. Huisman, P.W.M. Blom, J.C. Hummelen, U. Scherf and T.M. Klapwijk, “Solution-processed ambipolar organic field-effect transistors and inverters,” Nat. Mater. vol. 2, no. 10, pp.678-682, Sep. 2003.
    [41] M. Shkunov, R. Simms, M. Heeney, S. Tierney and I. MacCulloch, “Ambipolar Field-Effect Transistors Based on Solution-Processable Blends of Thieno[2,3-b]thiophene Terthiophene Polymer and Methanofullerenes,” Adv. Mater. vol. 17, no. 21, pp.2608-2612, Sep. 2005.
    [42] K. Tada, H. Harada and K. Yoshino, “Polymeric Bipolar Thin-Film Transistor Utilizing Conducting Polymer Containing Electron Transport Dye,” Jpn. J. Appl. Phys. vol. 35, part 2 no.7B, pp. L944-L946, May 1996.
    [43] A. Babel, J.D. Wind and S.A. Jenekhe, “Ambipolar Charge Transport in Air-Stable Polymer Blend Thin-Film Transistors,” Adv. Mater. vol. 14, no. 9, pp.891-898, Sep. 2004.
    [44] S. Cho, J. Yuen, Y. Kim, K. Lee and A.J. Heeger, “Ambipolar organic field-effect transistors fabricated using a composite of semiconducting polymer and soluble fullerene,” Appl. Phys. Lett. vol. 89, no. 15, p.153505, Oct. 2006
    [45] H. Wang, J. Wang, X. Yan, J. Shi, H. Tian, Y. Geng and D. Yan, “Ambipolar organic field-effect transistors with air stability, high mobility, and balanced transport ,” Appl. Phys. Lett. vol. 88, no. 13, p.133508, Mar. 2006.
    [46] A. Dodabalapur, H.E. Katz, L. Torsi and R.C. Haddon, “Organic Heterostructure Field-Èffect Transistors,” Science vol. 269, no. 5230, pp.1560-1562, Sep. 1995.
    [47] S.J. Kang, Y. Yi, C.Y. Kim, J.H. Seo, M. Noh, K. Jeong, K.H. Yoo and C.N. Whang, “Ambipolar organic thin-film transistors using C60/pentacene structure: Characterization of electronic structure and device property,” Appl. Phys. Lett. vol. 87, no. 23, p.233502, Nov. 2005.
    [48] R. Ye, M. Baba, Y. Oishi, K. Mori and K. Suzuki, “Air-stable ambipolar organic thin-film transistors based on an organic homostructure,” Appl. Phys. Lett. vol. 86, no. 25, p.253505, Jun. 2005.
    [49] T.D. Anthopoulos, D.M. de Leeuw, E. Cantatore, S. Setayesh, E.J. Meijer, C. Tanase, J.C. Hummelen and P.W.M. Blom, “Organic complementary-like inverters employing methanofullerene-based ambipolar field-effect transistors,” Appl. Phys. Lett. vol. 85, no. 18, pp.4205-4207, Sep. 2004.
    [50] T.D. Anthopoulos, S. Setayesh, E. Smits, M. Cölle, E. Cantatore, B. de Boer, P.W.M. Blom and D.M. de Leeuw, “Air-Stable Complementary-like Circuits Based on Organic Ambipolar Transistors,” Adv. Mater. vol. 18, no. 14, pp.1900-1904, Jun. 2006.
    [51] L. Bürgi, M. Turbiez, R. Pfeiffer, F. Bienewald, H.J. Kirner and C. Winnewisser, “High-Mobility Ambipolar Near-Infrared Light-Emitting Polymer Field-Effect Transistors,” Adv. Mater. vol. 20, no. 11, pp.2217-2224, Jun. 2008.
    [52] M. Chikamatsu, T. Mikami, J. Chisaka, Y. Yoshida, A. Shimizu, T. Kubo, Y. Morita and K. Nakasuji, “Ambipolar organic field-effect transistors based on a low band gap semiconductor with balanced hole and electron mobilities,” Appl. Phys. Lett. vol. 91, no. 4, p.043506, Jul 2007.
    [53] J.C. Ribierre, T. Fujihara, S. Watanabe, M. Matsumoto, T. Muto, A. Nakao and T. Aoyama, “Direct Laser Writing of Complementary Logic Gates and Lateral p–n Diodes in a Solution-Processible Monolithic Organic Semiconductor,” Adv. Mater. vol. 22, no. 15, pp.1722-1726, Apr. 2010.
    [54] X. L. Chen, Z. Bao, J. H. Schön, A. J. Lovinger, Y.-Y. Lin, B. Crone, A. Dodabalapur, and B. Batlogg, “Ion-modulated ambipolar electrical conduction in thin-film transistors based on amorphous conjugated polymers,” Appl. Phys. Lett. vol. 78, no. 2, pp.228-230, Jan. 2001.
    [55] Y.C. Li, Y. J. Lin, H. J. Yeh, T. C. Wen, L. M. Huang, Y. K. Chen, Y. H. Wang, “Ion-modulated electrical conduction in polyaniline-based field-effect transistors,” Appl. Phys. Lett. vol. 92, no. 9, p.093508, Mar. 2008.
    [56] Henrik G. O. Sandberg, Gitti L. Frey, Maxim N. Shkunov, Henning Sirringhaus,and Richard H. Friend“Ultrathin Regioregular Poly(3-hexyl thiophene) Field-Effect Transistors,” Langmuir vol. 148, no. 26, pp.10176-10182, Nov. 2002.
    [57] Guangming Wang, Takashi Hirasa, Daniel Moses., Alan J. Heeger“Fabricationof regioregular poly(3-hexylthiophene) field-effect transistors by dip-coating,” Synth. Met. vol. 146, no. 2, pp.127-132, Oct. 2004.
    [58] Do Hwan Kim, Yeong Don Park, Yunseok Jang, Hoichang Yang, Yong HoonKim, Jeong In Han“Enhancement of Field-Effect Mobility Due to Surface-Mediated Molecular Ordering in Regioregular Polythiophene Thin Film Transistors,” Adv. Funct. Mater. vol. 15, no. 1, pp78-82, Jan. 2005.
    [59] J. A. Cheng, C. S. Chuang, M. N. Chang, Y. C. Tsai, and H. P. Shieh, “Enhanced field-effect mobility in pentacene based organic thin-film transistors on polyacrylates,” J. Appl. Phys. vol. 105, no. 6, p.064506, Mar. 2009.
    [60] B. Stadlober, M. Zirkl, M. Beutl, and G. Leising, “High-mobility pentacene organic field-effect transistors with a high-dielectric-constant fluorinated polymer film gate dielectric,” Appl. Phys. Lett. vol. 86, no. 24, p.242902, Jun. 2005.
    [61] K. Müller, I. Paloumpa, K. Henkel, and D. Schmeisser, “A polymer high-k dielectric insulator for organic field-effect transistors,” J. Appl. Phys. vol. 98, no. 5, p. 056104, Sep. 2005.
    [62] D. K. Hwang, J. H. Park, J. Lee, J. M. Choi, J. H. Kim, E. Kim, and S. Im, “Improving resistance to gate bias stress in pentacene TFTs with optimally cured polymer dielectric layers,” J. Electrochem. Soc., vol. 153, no. 1, pp. G23-G26, May 2006.
    [63] M. Halik, H. Klauk, U. Zschieschang, G. Schmid, W. Radlik, and W. Weber, “Polymer Gate Dielectrics and Conducting-Polymer Contactsfor High-Performance Organic Thin-Film Transistors,” Adv. Mater. vol. 14, no. 23 ,pp. 1717-1722, Dec. 2002.
    [64] M. Halik, H. Klauk, U. Zschieschang, G. Schmid, S. Ponomarenko, S. Kirchmeyer, and W. Weber, “Relationship Between Molecular Structure and Electrical Performance of Oligothiophene Organic Thin Film Transistors,” Adv. Mater. vol. 15, no. 11, pp. 917-922, Jun. 2003.
    [65] L. F. Drummy and D. C. Martin, “Thickness-Driven Orthorhombic to Triclinic Phase Transformation in Pentacene Thin Films,” Adv. Mater. vol. 17, no. 7, pp.903-907, Apr. 2005.
    [66] W. Y. Chou, C. W. Kuo, H. L. Cheng, Y. R. Chen, F. C. Tang, F. Y. Yang, D. Y. Shu, and C. C. Liao, ”Effect of surface free energy in gate dielectric in pentacene thin-film transistors,” Appl. Phys. Lett., vol. 89, no. 11, p. 112126, Sep. 2006.
    [67] K. Shin. S. Y. Yang, C. Yang, H. Jeon, and C. E. Park, “Effects of polar functional groups and roughness topography of polymer gate dielectric layers on pentacene field-effect transistors,” Organic Electronics, vol. 8, no. 4, pp. 336-342, Aug. 2007.
    [68] D. K. Hwang, C. S. Kim, J. M. Choi, K. Lee, J. H. Park, E. Kim, H. K. Baik, J. H. Kim, and S. Im, “Polymer/YOx Hybrid-Sandwich Gate Dielectrics for Semitransparent Pentacene Thin-Film Transistors Operating Under 5 V,” Adv. Mater. vol. 18, no. 11, pp.2299-2303, Sep. 2006.
    [69] D. Dimitrakopoulos, A. R. Brown, and A. Pomp, “Molecular beam deposited thin films of pentacene for organic field effect transistor applications,” J. Appl. Phys. vol. 80, no. 4, pp.2501-2508, May 1996.
    [70] T. Takenobu, T. Takahashi, T. Tsukagoshi, Y. Aoyagi, and Y. Iwasa, “High-performance transparent flexible transistors using carbon nanotube films,” Appl. Phys. Lett., vol. 88, no. 3, p. 033511, Jan. 2006.
    [71] J. M. Choi, D. K. Hwang, J. H. Kim, and S. Im, “Transparent thin-film transistors with pentacene channel, AlOx gate, and NiOx electrodes,” Appl. Phys. Lett., vol. 86, no. 12, p. 123505, Mar. 2005.
    [72] J. Lee, D. K. Hwang, J.-M. Choi, K. Lee, J. H. Kim, S. Im, J. H. Park, and E. Kim, “Flexible semitransparent pentacene thin-film transistors with polymer dielectric layers and NiOx electrodes,” Appl. Phys. Lett., vol. 87, no. 2, p. 023504, Jul. 2005.
    [73] J. C. C. Fan and J. B. Goodenough, “X‐ray photoemission spectroscopy studies of Sn‐doped indium‐oxide films,” J. Appl. Phys. vol. 48, no. 8, pp. 3524-3531, Mar. 1977.
    [74] I. Hong, M. Lee, Y. Koo, H. Jeong, T. Kim, and O. Song, “Effective hole injection of organic light-emitting diodes by introducing buckminsterfullerene on the indium tin oxide anode,” Appl. Phys. Lett, vol. 87, no. 6, p. 063502, Aug. 2005.
    [75] Y. J. Lin, Y. C. Li, T. C. Wen, L. M. Huang, Y. K. Chen, H. J. Yeh, and Y. H. Wang, “Improvement of transparent organic thin film transistor performance by inserting a lithium fluoride buffer layer,” Appl. Phys. Lett. vol. 93, no. 4, p. 043305, Jul. 2008.
    [76] R. Hajlaoui, G. Horowitz, F. Garnier, A. A. Arce-Brouchet, L. Laigre, A. E. Kassmi, F. Demanze, and F. Kouki, “Improved field-effect mobility in short oligothiophenes: Quaterthiophene and quinquethiophene,” Adv. Mater. (Weinheim, Ger.) vol. 9, no. 5, pp. 389-391, May. 1997.
    [77] K. Itaka, M. Yamashiro, J. Yamaguchi, M. Haemori, S. Yaginuma, Y. Matsumoto, M. Kondo, and H. Koinumai, “High-Mobility C60 Field-Effect Transistors Fabricated on Molecular- Wetting Controlled Substrates,” Adv. Mater. vol. 18, no. 13, pp. 1713-1716, Jul. 2006.
    [78] P. Cosseddu, A. Bonfiglio, I. Salzmann, J. P. Rabe, and N. Koch, “Ambipolar transport in transparent and flexible all-organic heterojunction field effect transistors at ambient conditions,” Organic Electronics, vol. 9, no. 2, pp. 191-197, Apr. 2008.
    [79] P. V. Necliudov, M. S. Shur, D. J. Gundlach, and T. N. Jackson, “Contact resistance extraction in pentacene thin film transistors,” Solid-State Electron. vol. 47, no. 2, pp. 259-262, Feb. 2003.
    [80] S. H. Choi, S. M. Jeong, W. H. Koo, and H. K. Baik, “Fabrication of Organic Electroluminescence Device with Ion Beam-Assisted Deposition of Ultrathin Lithium Fluoride as a Hole Injection Layer,” Jpn. J. Appl. Phys., vol. 44, no. 19, pp.L603-L605, Apr. 2005.
    [81] H. L. Cheng; Y. S. Mai; W. Y. Chou; L. R. Chang; X. W. Liang, “Thickness-Dependent Structural Evolutions and Growth Models in Relation to Carrier Transport Properties in Polycrystalline Pentacene Thin Films,” Adv. Funct. Mater. vol. 17, no. 17, pp. 3639-3649, Oct. 2007.
    [82] H. Yan, T. Kagata, H. Okuzaki, “Ambipolar pentacene/C60-based field-effect transistors with high hole and electron mobilities in ambient atmosphere,” Appl. Phys. Lett. vol. 94, no. 2, p. 023305, Jan. 2009.
    [83] D. S. Park, I. S. Jeong, C. Y. Kim, W. C. Jang, K. Jeong, K. H. Yoo, C. N. Whang, Y. S. Lee, and S. O. Kim, “The influence of thin insulating lithium fluoride inserted pentacene layer on pentacene-based organic thin-film transistor,” Thin Solid Films vol. 495, no. 1-2, pp.385-388, Jan. 2006.
    [84] Y. Zhao, G. Dong, L. Wang, and Y. Qiu, “Improved photostability of organic thin film transistors with tantalum oxide/poly(4-vinylphenol) double gate insulators,” Appl. Phys. Lett. vol. 90, no. 25, p. 252110, Jun. 2007.
    [85] G.-W. Kang, K.-M. Park, J.-H. song, C.H. Lee and D.h. Hwang, “The electrical characteristics of pentacene-based organic field-effect transistors with polymer gate insulators,” Curr. Appl. Phys. vol. 5, no. 4, pp. 297-3011, May 2005.
    [86] J. Lee, D. K. Hwang, J.-M. Choi, K. Lee, J. H. Kim, J. H. Park, E. Kim, and S. Im,” Flexible semitransparent pentacene thin-film transistors with polymer dielectric layers and NiOx electrodes,” Appl. Phys. Lett. vol. 87, no. 2, p. 023504, Jul. 2005.
    [87] S. Mun, J. Choi, K. H. Lee, and S. Im, “Determining the optimum pentacene channel thickness on hydrophobic and hydrophilic dielectric surface,” Appl. Phys. Lett. vol. 93, no. 23, p. 233301, Dec. 2008.
    [88] Y. Nosho, Y. Ohno, S. Kishimoto, and T. Mizutani, “The effects of chemical doping with F4TCNQ in carbon nanotube field-effect transistors studied by the transmission-line-model technique,” Nanotechnology vol. 18, no. 41, p. 415202, Sep. 2007.
    [89] C. C. Mattheus, G. A. de Wijs, R. A. de Groot, T. T. M. Palstra, “Modeling the Polymorphism of Pentacene,” J. Am. Chem. Soc. vol. 125, no. 20, pp. 6323-6330, Apr. 2003.
    [90] J. Park, J. Park, N.Kim, H. J. Lee, and M. Yi, “Performance Enhancement of Organic Thin-Film Transistors with C60/Au Bilayer Electrode,” Jpn. J. Appl. Phys. vol. 47, no. 7, pp. 5668-5671, Jul. 2008.
    [91] H. L. Cheng, W. Y. Chou, C. W. Kuo, F. C. Tang, and Y. W. Wang, “Electric field-induced structural changes in pentacene-based organic thin-film transistors studied by in situ micro-Raman spectroscopy,” Appl. Phys. Lett. vol. 88, no. 16, p.161918, Apr. 2006.
    [92] R. He, I. Dujovne, L. Chen, Q. Miao, C. F. Hirjibehedin, A. Pinczuk, C. Nuckolls, C. Kloc, and A. Ron, “Resonant Raman scattering in nanoscale pentacene films,” Appl. Phys. Lett. vol. 84, no. 6, pp. 987-989, Feb. 2004.
    [93] T. Jentzsch, H. J. Juepner, K. W. Brzezinka, and A. Lau, “Efficiency of optical second harmonic generation from pentacene films of different morphology and structure,” Thin Solid Films. vol. 315, no. 1, pp. 273-280, Mar. 1998.

    下載圖示 校內:2016-02-04公開
    校外:2016-02-04公開
    QR CODE