| 研究生: |
廖元煜 Liao, Yuan-Yu |
|---|---|
| 論文名稱: |
不同電洞傳輸層之鈣鈦礦太陽能電池研究 Different Hole Transport Layer for Perovskite solar cells |
| 指導教授: |
賴韋志
Lai, Wei-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 氧化鎳 、氧化鋅 、銅摻雜鎳金薄膜 、遲滯效應 、太陽能電池 |
| 外文關鍵詞: | Zinc Oxide, Copper doped Ni/Au, Hysteresis, Solar Cells |
| 相關次數: | 點閱:80 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文分兩部分,第一部分主要探討以NiO Sol-Gel退火作為電洞傳輸層,並濺鍍氧化鋅作為電子傳輸層,應用於鈣鈦礦太陽能電池之研究;第二部分主要以鎳金薄膜摻雜銅退火氧化作為透明導電層與電洞傳輸層,藉由摻雜改變其電性,最後應用於鈣鈦礦太陽能電池。
第一部分改變塗佈NiO時轉速與退火溫度,並以甲基胺碘化鉛製備鈣鈦礦結構的主動層,透過元件製作了解不同參數對太陽能元件所產生的影響以及物理意義,最後以最佳條件下堆疊ZnO薄膜,致力於製造P型與N型無機化結構,使太陽能電池在長時間下有穩定輸出之效率。
第二部分蒸鍍不同厚度之金薄膜與銅箔膜,並以高溫退火下,探討其穿透率在摻雜銅與本身鎳金薄膜之差異,並藉由SKPM量測其功函數,以及藉由四點探針量測其電阻值,加以佐證摻雜銅能使鎳金薄膜阻改變其電性,最後使用甲基胺碘化鉛作為元件主動層,透過元件製作了解改變不同厚度對其太陽能元件所產生之影響及物理意義。
The paper first describes the NiOx film properties, the final two parts explore different applications. With the first part focuses on using annealed NiOx Sol-Gel thin film as a hole transport layer, and sputtering zinc oxide as an electron transport layer is applied to the study of the perovskite solar cells. Second part copper doped Ni/Au thin film as the transparent conductive layer and the hole transport layer, to change its electrical properties by doping, and finally applied the perovskite solar cells.
The first part of the changes spin coating NiOx solution speed, annealing temperature, and the methylamine lead iodide as an active layer of perovskite structure. Through the production of components understand the different parameters affecting the physical meaning of solar cells. Finally, under optimum conditions of stacked ZnO film producted P-type and N-type inorganic structure. The solar cells efficiency output stability in a long time.
The second part of the gold and copper deposition of different thickness, and high temperature annealing to discuss penetration in copper doped with nickel-gold film of difference itself. To measure work function by SKPM as well as by four-point probe measuring the resistance value. With the above mentioned can prove copper-doped nickel gold thin changes its electrical properties.
Finally, we investigate the copper film causes hysteresis, and the forward backward scan is mismatch. SEM can demonstrate the impact caused by the grain boundaries.
[1]陳景生, 阿波羅的禮讚:太陽光電發展潛力無窮, 能源報導, 5, 8-11, 2008.
[2]Best Research Cell Efficiencies, National Renewable Energy Laboratory, 2016.
[3]賴建宇, 台灣太陽光電產業本土化核心競爭力之探討, 國立交通大學科技管理研究所, 碩士論文, 2006.
[4]林建翰, 進化後的敏化染料電池-鈣鈦礦太陽能電池, 光連雙月刊, 114, 11-15, 2014.
[5]Q. Chen, H. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. Liu, G. Li, Y. Yang, Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process, Journal of the American Chemical Society, 136, 622-625, 2013.
[6]Z. Ghorannevis, E. Akbarnejad, M. Ghoranneviss, Structural and morphological properties of ITO thin films grown by magnetron sputtering, Journal of Theoretical and Applied Physics, 9, 285-290, 2015.
[7]黃詠隆, 氧化鋅薄膜之低溫電性傳輸行為研究, 國立交通大學電子物理研究所, 碩士論文, 2009.
[8]D. Demeo, S. MacNaughton, S. Sonkusale, Vandervelde, Electrodeposited Copper Oxide and Zinc Oxide Core-Shell Nanowire Photovoltaic Cells, INTECH Open Access Publisher, 2011.
[9]A. Sproul, Understanding the p-n Junction, Queensland University of Technology, UNSW, 2009.
[10]A. Luque, S. Hegedus, Handbook of photovoltaic science and engineering, John Wiley & Sons, 2003.
[11]張舜發, 有機無機異質接面太陽能電池, 國立交通大學應用化學系分子科學研究所, 碩士論文, 2013.
[12]紀國鐘, 蘇炎坤, 光電半導體技術手冊, 台灣電子材料與元件協會, 2002.
[13]A. J. McEvoy, L. Castañer, T. Markvart, Solar cells: Materials manufacture and operation, Newnes, 2012.
[14]D. A. Neamen, Semiconductor Physics & Devices, McGraw-Hill Higher Education, 2003.
[15]施敏, 李明逵, 半導體元件物理與製作技術, 國立交通大學, 2013.
[16]Hsiao, Y. Tung, C. H. Chen, Maximum power tracking for photovoltaic power system, Industry Applications Conference, 2, 1035-1040, 2002.
[17]Description of Air-Mass, National Renewable Energy Laboratory, 2000.
[18]楊志鴻, 複合高分子氣體感測元件的電紡製作與性能改進, 國立交通大學機械工程研究所, 碩士論文, 2011.
[19]T. Takano, H. Masunaga, A. Fujiwara, H. Okuzaki, T. Sasaki, PEDOT Nanocrystal in Highly Conductive PEDOT:PSS Polymer Films, Macromolecules, 45, 3859-3865, 2012.
[20]A. Nardes, M. Kemerink, M. M. de Kok, E. Vinken, K. Maturova, R. A. J. Janssen, Conductivity work function and environmental stability of PEDOT:PSS thin films treated with sorbitol, Organic Electronics, 9, 727-734, 2008.
[21]M. Irwin, D. B. Buchholz, A. W. Hains, R. P. H. Chang, T. J. Marks, p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells, Proceedings of the National Academy of Sciences, 105, 2783-2787, 2008.
[22]S. Shi, Y. Li, X. Li, H. Wang, Advancements in all-solid-state hybrid solar cells based on organometal halide perovskites, Materials Horizons, 2, 378-405, 2015.
[23]L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, Md. K. Nazeeruddin, M. Grätzel, Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells, Journal of the American Chemical Society, 134, 17396-17399, 2012.
[24]王淵霆, 具透明金屬電極之平板鈣鈦礦太陽能電池, 國立成功大學光電科學與工程研究所, 碩士論文, 2015.
[25]B. N. Chapman, D. Downer, L. J. M. Guimarães, Electron effects in sputtering and cosputtering, Journal of Applied Physics, 45, 2115-2120, 1974.
[26]A. Hamed, Y. Y. Sun, Y. K. Tao, R. L. Meng, and P. H. Hor, Effects of oxygen and illumination on the in situ conductivity of C60 thin films, Physical Review B, 47, 873-880, 1993.
[27]Y. Xu, T. Liu, Z. Li, B. Feng, S. Li, J. Duan, C. Ye, J. Zhang, H. Wang, Preparation and photovoltaic properties of perovskite solar cell based on ZnO nanorod arrays, Applied Surface Science, 16, 1-8, 2016.
[28]C. Zuo, L. Ding, Solution-Processed Cu2O and CuO as Hole Transport Materials for Efficient Perovskite Solar Cells, Small, 11, 5528-5532, 2015.
[29]J. C. Rivière, S. Myhra, Handbook of surface and interface analysis: methods for problem-solving, CRC Press, 2009.
[30]J. Hölzl, F. K. Schulte, Work function of metals, Solid Surface Physics, 85, 1-150, 1979.
[31]S. C. Chen, T. Y. Kuo, Y. C. Lin, H. C. Lin, Preparation and properties of p-type transparent conductive Cu-doped NiO films, Thin Solid Films, 519, 4944-4947, 2011.
[32]H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. T. W. Wang, K. Wojciechowski, W. Zhang, Anomalous Hysteresis in Perovskite Solar Cells, The Journal of Physical Chemistry Letters, 5, 1511-1515, 2014.
[33]F. Zhang, W. Ma, H. Guo, Y. Zhao, X. Shan, K. Jin, H. Tian, Q. Zhao, D. Yu, X. Lu, G. Lu, S. Meng, Interfacial Oxygen Vacancies as a Potential Cause of Hysteresis in Perovskite Solar Cells, Chemistry of Materials, 28, 802-812, 2016.
[34]B. Chen, M. Yang, S. Priya, K. Zhu, Origin of J–V Hysteresis in Perovskite Solar Cells, The Journal of Physical Chemistry Letters, 7, 905-917, 2016.
[35]G. A. Sepalage, S.Meyer, A. Pascoe, A. D. Scully, F. Huang, U. Bach, Y. B. Cheng, L. Spiccia, Copper(I) Iodide as Hole-Conductor in Planar Perovskite Solar Cells: Probing the Origin of J–VHysteresis, Advanced Functional Materials, 25, 5650-5661, 2015.
[36] S. Chatterjee, A. J. Pal, Introducing Cu2O Thin Films as a Hole-Transport Layer in Efficient Planar Perovskite Solar Cell Structures, The Journal of Physical Chemistry C, 120, 1428-1437, 2016.