簡易檢索 / 詳目顯示

研究生: 邱珮綺
Chiou, Pei-Chi
論文名稱: 在菸草表達來自於Thermus thermophilus的磷酸酶基因
Expression of acid phosphatase gene from Thermus thermophilus in transgenic tobacco
指導教授: 張清俊
Chang, Ching-Chun
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技研究所
Institute of Biotechnology
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 104
中文關鍵詞: 植酸磷酸酶轉殖植物
外文關鍵詞: acid phosphatase, phytate, Thermus thermophilus, transgenic plants
相關次數: 點閱:160下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 單胃動物體內由於缺乏可分解植酸(phytate)的酵素,所以無法將穀物飼料中的植酸消化吸收。因此,畜牧業者廣泛使用微生物發酵所生產的植酸酶(phytase)作為飼料添加。植酸酶可以將植酸分解成肌醇(myo-inositol)及無機磷酸,提升動物對植物性磷酸鹽及其它營養素之攝取。然而,以發酵的方式來生產植酸酶會有成本過高的問題。
    本實驗室過去的研究顯示溫泉菌(Thermus thermophilus)的酸性磷酸酶(acid phosphatase)具有水解植酸之能力(譚, 2009)。故本研究的目的為利用轉殖植物來生產磷酸酶。首先建構二個表現載體(pBIN-IV-AP1及pBIN-IV-AP2),再利用農桿菌將表現載體導入菸草中,分別將蛋白質表現於胞內(pBIN-IV-AP1轉殖品系)或使其分泌至胞外(pBIN-IV-AP2轉殖品系)。利用PCR篩選轉殖植物(T0及T1),顯示有外源基因存在,但是Southern blot分析T1轉殖植物的結果並不能清楚地偵測外源基因的copy數目。另外,用Western blot偵測蛋白質的表現量,在轉殖植物與對照組並未有顯著差異;zymogram分析結果也顯示某些轉殖植物雖有表現外源蛋白但其表現量低。此外,Northern blot的結果顯示RNA的表現量低。綜合本實驗結果,可推測轉殖植物確實帶有AP基因,但是因為基因表現量低及實驗技術問題因此轉殖植物與非轉殖植物的實驗結果沒有顯著差異。

    Lack of phytate-hydrolyzing enzymes in monogastric animals’ digestive tracts and antinutritional effect of undigested phytate of animal feeds would limit the nutritional value of cereals. Phytase (myo-inosital hexakis-phosphate phosphohydrolase) can hydrolyze phytate to myo-inositol and inorganic phosphate. Therefore, phytase produced in microorganisms by fermentation have been widely used as a supplement to animal feed. However, the cost is relatively high for the production of phytase through fermentation.
    From previous studies in our Lab., the putative acid phosphatase from Thermus thermophilus is able to hydrolyze phytate (Tham 2009). Therefore, the aim of this study is to highly produce acid phosphatase in transgenic plants. First, two plant nuclear expression vectors were constructed, pBIN-IV-AP1 and pBIN-IV-AP2, respectively. The former can direct the expressed acid phosphatase to cytosol and the latter can direct the expressed acid phosphatase to apoplast. Subsequently, these two expression vectors were individually transformed into tobacco by Agrobacterium–mediated method.
    T0 and T1 transgenic plants were analyzed by PCR to confirm the integration of foreign gene into chromosome. However, Southern blot analysis of T1 transgenic plants did not clearly detect the copy number of foreign gene integration into chromosome. From the results of immuno-detection, it revealed that there were no significant differences between wild-type and transgenic plants in terms of acid phosphatase expression level. In contrast, zymogram assay indicated that acid phosphatase was expressed in some transgenic plants, but their expression levels are low. Furthermore, Northern blot results suggested that the RNA expression levels are low in selected transgenic plants. In conclusion, transgenic plants indeed carried AP gene in their genome, but their expression level is too low to be clearly distinguished from wild type.

    目錄 第一章、 前言............................................1 第二章、 文獻探討........................................2 1. 溫泉菌Thermus thermophilus......................2 2. 酸性磷酸酶..................................... 2 2.1 細菌的酸性磷酸酶............................... 3 2.2 植物的酸性磷酸酶.............................. 4 2.3 Tartrate-resistant acid phosphatases(TRAPs) ... 4 2.4 Thermus thermopilus 的acid phosphatase之生化特性.5 3. 植酸(phytate)與植酸酶(phytase)............. 6 3.1 植酸............................................6 3.2 植酸酶在畜牧業及農業上的應用....................7 3.3 植酸酶的研究進展................................9 4. 研究目的.......................................11 第三章、 材料與方法.................................... 12 實驗材料............................................... 12 實驗步驟............................................... 12 1. Thermus thermophilus 菌體培養與基因組DNA之獲得.12 2. 構築表現載體................................. 13 3. 植物基因轉殖(Agrobacterium - mediated transformation)........................................ 20 4. 轉殖植株篩選.................................. 24 5. 獲得同質純系之轉殖植株(homozygous lines)...... 26 6. 偵測蛋白質表現................................ 27 7. 基因轉殖植株基因體之分析...................... 31 8. 測量酵素活性.................................. 39 第四章、 實驗結果...................................... 41 1. 酸性磷酸酶基因的獲得...........................41 2. 獲得持續性表現酸性磷酸酶基因之菸草轉殖品系.....41 3. 轉殖植株之孟德爾分離率分析.....................41 4. 南方墨點法(Southern blot)分析轉殖植株..........42 5. 西方墨點法(Western blot)分析轉殖植株.......... 42 6. 酵素活性測定...................................42 7. 北方墨點法(Northern blot)分析轉殖植株..........43 8. 生長測試.......................................43 第五章、 討論.......................................... 45 參考資料............................................... 48 附錄一、利用轉殖菸草產生Thermobifida fusca纖維素外切酶Cel6B...................................................75 附錄二、藥品與溶液配方................................. 96 表目錄 表一、來自植物、動物體與Thermus thermophilis的tartrate-resistant acid phosphatase的保留性序列................. 52 表二、Thermus thermopilus的酸性磷酸酶的受質專一性.......53 表三、穀類及根莖類作物中的植酸含量..................... 53 表四、由植物中萃取出的植酸酶及其特性................... 54 表五、歐盟所核准的可添加於飼料中的植酸酶............... 54 表六、轉殖pBIN-IV-AP1品系的轉殖植株之孟德爾遺傳分離率分析55 表七、轉殖pBIN-IV-AP2品系的轉殖植株之孟德爾遺傳分離率分析55 圖目錄 圖一、ImpactVector 1.1與1.2質體結構圖...................56 圖二、p BINPLUS質體結構圖.............................. 58 圖三、Thermus thermophilus的酸性磷酸酶基因及胺基酸序列. 59 圖四、以PCR檢測菸草轉殖株(T0)的基因體中是否含有kanamycin resistance基因......................................... 61 圖五、以PCR檢測菸草轉殖株(T1)的基因體中是否含有AP 基因. 63 圖六、南方墨點法偵測轉殖植物的外源DNA的存在.............64 圖七、西方墨點法偵測轉殖植物的酸性磷酸酶之表現量....... 66 圖八、Zymogram偵測轉殖植物的酸性磷酸酶的活性........... 70 圖九、北方墨點法偵測轉殖植物中RNA的表現量...............71 圖十、轉殖植物在含有植酸培養基的生長測試................72

    譚思潔 (2009) Thermus thermophilus 的磷酸酶之生化特性研究. 國立成功大學生物科技研究所碩士論文

    Austin S, Bingham ET et al. (1994) An overview of a feasibility study for the production of industrial enzymes in transgenic alfalfa. Ann N Y Acad Sci. May 2; 721: 234-44.

    Bertus van den Burg (2003) Extremophiles as a source for novel enzymes. Curr Opin Microbiol. Jun; 6(3): 213-8.

    Bilyeu KD, Zeng P et al. (2008) Quantitative conversion of phytate to inorganic phosphorus in soybean seeds expressing a bacterial phytase. Plant Physiol. Feb; 146(2): 468-77.

    Bohn L, Meyer AS et al. (2008) Phytate: impact on environment and human nutrition. A challenge for molecular breeding. J Zhejiang Univ Sci B. Mar; 9(3):165-91.

    Brinch-Pedersen H, Sorensen LD et al. (2002) Engineering crop plants: getting a handle on phosphate. Trends Plant Sci. Mar; 7(3): 118–125.

    Chen R, Xue G et al. (2008) Transgenic maize plants expressing a fungal phytase gene. Transgenic Res. Aug; 17(4): 633-43.

    Dalal RC (1977) Soil organic phosphorus. Adv Agron. 29: 83–117.

    Dai Z, Hooker BS et al. (2005) Optimization of Acidothermus cellulolyticus endoglucanase (E1) production in transgenic tobacco plants by transcriptional, post-transcription and post-translational modification. Transgenic Res. Oct; 14(5): 627-643.

    Denbow DM, Grabau EA et al. (1998) Soybeans Transformed with a fungal phytase gene improve phosphorus availability for broilers. Poult Sci. Jun; 77(6): 878-81.

    Duff SMG, Gautam S et al. (1994) The role of acid phosphatases in plant phosphorus metabolism. Physiol Plant. 90(4): 791–800.

    George TS, Simpson RJ et al. (2005) Expression of a fungal phytase gene in Nicotiana tabacum improves phosphorus nutrition of plants grown in amended soils. Plant Biotechnol J. Jan; 3(1): 129–140.

    Miksch G, Kleist S et al. (2002) Overexpression of the phytase from Escherichia coli and its extracellular production in bioreactors. Appl Microbiol Biotechnol. Sep; 59(6): 685–694.

    Haefner S, Knietsch A et al. (2005) Biotechnological production and applications of phytases. Appl Microbiol Biotechnol. Sep; 68(5): 588-597.

    Hamada A, Yamaguchi KI et al. (2004) Production of lupin acid phosphatase in transgenic rice for use as a phytate-hydrolyzing enzyme in animal feed. Biosci Biotechnol Biochem. Jul; 68(7): 1611-1616.

    Harland BF, Morris ER (1995) Phytate: a good or a bad food component? Nutr Res. May; 15(22): 733–754.

    Henne A, Brüggemann H et al. (2004) The genome sequence of the extreme thermophile Thermus thermophilus. Nat Biotechnol. May; 22(5): 547-53.

    Holford I (1997) Soil phosphorus: its measurement, and its uptake by plants. Aust J Soil Res. 35: 227–239.

    Hong CY, Cheng KJ et al. (2004) Production of two highly active bacterial phytases with broad pH optimain germinated transgenic rice seeds. Transgenic Res. Feb;13(1): 29–39.

    Hur YJ, Lee HG et al. (2007) A phosphate starvation-induced acid phosphatase from Oryza sativa: phosphate regulation and transgenic expression. Biotechnol Lett. May; 29(5): 829–835.

    Liu BL, Rariq A et al. (1998) The induction and characterization of phytase and beyond. Enzyme Microb Technol. 22: 415-424.

    Masui R, Kurokawa K et al. (2004) Complete genome sequence of Thermus thermophilus HB8. Unpublished. NCBI database.

    Mroz Z, Jongbloed AW et al. (1994) Apparent digestibility and retention of nutrients bound to phytate complexes as influenced by microbial phytase and feeding regimen in pigs. J Anim Sci. Jan;72(1): 126–132.

    Mudge SR, Smith FW et al. (2003) Root-specific and phosphate-regulated expression of phytase under the control of a phosphate transporter promoter enables Arabidopsis to grown on phytase as a sole P source. Plant Sci. 165: 871–878.

    Niehaus F, Bertoldo C et al. (1999) Extremophiles as a source of novel enzymes for industrial application. Appl Microbiol Biotechnol. Jun; 51(6): 711-729.

    Oddie GW, Schenk G et al. (2000) Structure, function, and regulation of tartrate-resistant acid phosphatase. Bone. Nov; 27(5): 575-84.

    Oshima T, Imahori K. (1974) Description of Thermus thermophilus (Yoshida and Oshima) comb. nov., a nonsporulating thermophilic bacterium from Japanese thermal spa. Int J Syst Bacteriol. 24: 102–112.

    Reddy NR, Sathe SK et al. (1982) Phytates in legumes and cereals. Adv Food Res. 28: 1–92.

    Richardson AE, Hadobas PA et al. (2001) Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant J. Mar; 25(6): 641–649.

    Rossolini GM, Schippa S et al. (1998) Bacterial nonspecific acid phosphohydrolases: physiology, evolution and use as tools in microbial biotechnology. Cell Mol Life Sci. Aug; 54(8): 833-850.

    Verwoerd TC, Paridon PA et al. (1995) Stable accumulation of Aspergillus niger phytase in transgenic tobacco leaves. Plant Physiol. Dec; 109(4): 1199–1205.

    Wyss M, Brugger R, et al. (1999) Biochemical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): catalytic properties. Appl Environ Microbiol. Feb; 65(2): 367–373.

    Xiao K, Harrison MJ et al. (2005) Transgenic expression of a novel M. truncatula phytase gene results in improved acquisition of organic phosphorus by Arabidopsis. Planta. Sep; 222(1): 27–36.

    Zimmermann P, Zardi G et al. (2003) Engineering the root-soil interface via targeted expression of a synthetic phytase gene in trichoblasts. Plant Biotechnol J. Sep; 1(5): 353–360.

    下載圖示 校內:2011-08-28公開
    校外:2011-08-28公開
    QR CODE