簡易檢索 / 詳目顯示

研究生: 邱裕文
Chiu, Yu-Wen
論文名稱: 中孔二氧化矽中的離子專一性傳輸及其基本機制
Ion-Specificity Transport in Mesoporous Silica and Its Fundamental Process
指導教授: 劉詠熙
Lau, Vincent Wing-hei
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2024
畢業學年度: 113
語文別: 英文
論文頁數: 101
中文關鍵詞: 離子選擇性傳輸離子分配SBA-15受限制之中孔
外文關鍵詞: ion selective transport, ion partitioning, SBA-15, confined mesopores
相關次數: 點閱:62下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 離子選擇性傳輸對於細胞的功能和分析設備至關重要(例如:離子選擇性電極和離子梯度電池)。受細胞離子通道啟發,具有官能基化孔洞的多孔材料被廣泛應用於離子分離與傳輸的薄膜設計中,例如:金屬有機框架材料(MOFs)、共價有機框架材料(COFs)以及中孔二氧化矽。這些材料可以通過以下特性實現離子選擇性:(1)孔徑控制:亞奈米級孔徑的孔洞可有助於去除水合殼層,實現高度選擇性;而奈米級孔徑的孔洞則依靠靜電吸引離子,並有助於保留離子的水合殼層,從而實現更快的傳輸。(2)可進行配位鍵結的官能基:具有官能基的孔洞可以通過配位鍵結的方式吸附特定離子,從而實現選擇性離子傳輸。然而,儘管亞奈米孔洞能夠提供高選擇性,但因水合作用受限,通常會導致離子傳輸速率降低。因此,在選擇性與傳輸速率之間取得平衡,是實現高效離子傳輸的關鍵。在本研究中,我們採用中孔二氧化矽 SBA-15(孔徑為 6-8 nm)為材料,研究離子在受限孔徑中的分配與傳輸行為,並通過電化學分析與定量分析進行實驗。與擁有亞奈米孔洞(<1 nm)的金屬有機框架材料和共價有機框架材料相比,SBA-15 不僅具有更穩定的結構,還兼具成本低廉與合成簡單的優勢。SBA-15 具有奈米級孔洞有助於具水合殼層的離子進行傳輸並維持選擇性,同時其帶負電荷的表面可與目標陽離子相互作用。本研究為快速且高選擇性的離子傳輸系統提供了一種具潛力的解決方案,並為未來的離子選擇性薄膜的開發提供了新的方向。

    Ion-selective transport is crucial for cellular functions and analytical devices, such as ion-selective electrodes and ion-gradient cells. Inspired by cellular ion channels, porous membranes with functionalized pores like metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), and mesoporous silica are widely explored for ion separation and transport. These materials achieve ion selectivity through: (1) Pore size control: Sub-nanometer pores remove hydration shells for high selectivity, while nanometer pores rely on electrostatic attraction to retain water molecules for faster transport. (2) Functional group coordination: Functionalized pores adsorb ions based on affinity, enabling targeted transport. While sub-nanometer pores offer high selectivity, they often reduce ion conductivity due to limited hydration. Balancing selectivity and conductivity is key for efficient ion transport.
    Here, we use mesoporous silica SBA-15 (pore size: 6-8 nm) to investigate ion partitioning and transport within confined pores, characterized by electrochemical and quantitative analysis. Compared to MOFs and COFs, which have sub-nanometer pores (<1 nm), SBA-15 offers a more chemical inert, lower cost, and easier synthesis. Its nanometer-sized pores support hydrated ion transport and maintain selectivity, while its negatively charged surface interacts with targeted cations. This research provides a promising avenue for developing fast, selective ion transport systems.

    摘要 II Abstract III 致謝 IV Content V Table Content VII Figure Content VIII Abbreviations Used in This Thesis XIII Chapter 1 Introduction 1 1.1 The Importance of Ion Selectivity 1 1.2 Literature Review 3 1.2.1 Ion Transport 3 1.2.2 Ion Transport across the Membrane 10 1.3 Typical Ion Transport Membranes 12 1.4 Methodology 16 Chapter 2 Method and Material 20 2.1 List All Chemicals Used in Experiments 20 2.2 Instrument Specifications 21 2.3 Silica Materials Syntheses 23 2.3.1 Details of SBA-15 Synthesis 23 2.3.2 Details of Non-Porous Silica Synthesis 24 2.4 Ion Diffusion via Ion Transport Membrane 25 2.4.1 Fabrication of Ion Transport Membrane 25 2.4.2 Membrane Optimization Experiment 26 2.4.3 Ion Diffusion Experiment 27 2.5 Ion Adsorption/Desorption onto Silica Materials 29 2.5.1 Ion Adsorption Experiment 29 2.5.2 Ion Desorption Experiment 30 Chapter 3 Result and Discussion 33 3.1 Characterization of SBA-15 and Monodisperse Silica 33 3.1.1 Porosity and Surface Area Analysis 33 3.1.2 FTIR Analysis 40 3.2 Elemental Purity Analysis of SBA-15-c and Mono-c 42 3.3 Optimization of Membrane 46 3.4 Characteristics of SBA-15-c-m and Mono-c-m Before Ion Diffusion 53 3.5 Ion Diffusion Process 57 3.5.1 Ion Diffusion Results 58 3.5.2 Ion Selectivity in Diffusion Process 63 3.6 Cation Adsorption and Desorption Mechanism 65 3.7 Elemental Analysis of SBA-15-c-m and Mono-c-m after Ion Diffusion 70 Chapter 4 Conclusion 76 Chapter 5 Reference 77 Chapter 6 Appendix 81 6.1 Synthesis of Calcined Monodisperse Silica (mono-c) 81 6.2 Interparticle Pores in the Monodisperse Silica 82 6.3 Ion diffusion of SBA-15-c-m and Mono-c-m 83 6.4 Performance of Different Substrates 85 6.5 Ion Hydration Radius 87

    (1) Hauser, P. C.; Chiang, D. W. L.; Wright, G. A. A Potassium-Ion Selective Electrode with Valinomycin Based Poly(vinyl chloride) Membrane and a Poly(vinyl ferrocene) Solid Contact. Anal. Chim. Acta 1995, 302 (2), 241-248.
    (2) Pioda, L.; Wipf, H.; Simon, W. A Crystalline Complex of Potassium Rhodanide and Valinomycin, an Antibiotic of High Potassium Ion Selectivity. Emf Measurements on Synthetic Membranes. Chimia 1968, 22, 189-191.
    (3) Gerdroodbar, A. E.; Alihemmati, H.; Safavi-Mirmahaleh, S.-A.; Golshan, M.; Damircheli, R.; Eliseeva, S. N.; Salami-Kalajahi, M. A Review on Ion Transport Pathways and Coordination Chemistry between Ions and Electrolytes in Energy Storage Devices. J. Energy Storage 2023, 74, 109311.
    (4) Fritz, J. S. Factors Affecting Selectivity in Ion Chromatography. J. Chromatogr. A 2005, 1085 (1), 8-17.
    (5) Zumdahl, S. S.; DeCoste, D. J. Chemical Principles; Cengage Learning, 2012.
    (6) Atkins, P. W.; de Paula, J. Atkins' Physical Chemistry; OUP Oxford, 2014.
    (7) Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications; John Wiley & Sons: New York, 2001.
    (8) Nordness, O.; Brennecke, J. F. Ion Dissociation in Ionic Liquids and Ionic Liquid Solutions. Chem. Rev. 2020, 120 (23), 12873-12902.
    (9) Mähler, J.; Persson, I. A Study of the Hydration of the Alkali Metal Ions in Aqueous Solution. Inorg. Chem. 2012, 51 (1), 425-438.
    (10) Bachman, J. C.; Muy, S.; Grimaud, A.; Chang, H.-H.; Pour, N.; Lux, S. F.; Paschos, O.; Maglia, F.; Lupart, S.; Lamp, P.; et al. Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. Chem. Rev. 2016, 116 (1), 140-162.
    (11) Xi, G.; Xiao, M.; Wang, S.; Han, D.; Li, Y.; Meng, Y. Polymer-Based Solid Electrolytes: Material Selection, Design, and Application. Adv. Funct. Mater. 2021, 31 (9), 2007598.
    (12) Famprikis, T.; Canepa, P.; Dawson, J. A.; Islam, M. S.; Masquelier, C. Fundamentals of Inorganic Solid-State Electrolytes for Batteries. Nat. Mater 2019, 18 (12), 1278-1291.
    (13) Xue, Z.; He, D.; Xie, X. Poly(ethylene oxide)-Based Electrolytes for Lithium-Ion Batteries. J. Mater. Chem. A 2015, 3 (38), 19218-19253.
    (14) Pérez-Botella, E.; Valencia, S.; Rey, F. Zeolites in Adsorption Processes: State of the Art and Future Prospects. Chem. Rev. 2022, 122 (24), 17647-17695.
    (15) Inglezakis, V. J. The Concept of “Capacity” in Zeolite Ion-Exchange Systems. J. Colloid Interface Sci. 2005, 281 (1), 68-79.
    (16) Kreuer, K.-D.; Münchinger, A. Fast and Selective Ionic Transport: From Ion-Conducting Channels to Ion Exchange Membranes for Flow Batteries. Annu. Rev. Mater. Res. 2021, 51 (Volume 51, 2021), 21-46.
    (17) Daiguji, H. Ion Transport in Nanofluidic Channels. Chem. Soc. Rev. 2010, 39 (3), 901-911.
    (18) Al-Bazali, T. Insight into Debye Hückel Length (Κ−1): Smart Gravimetric and Swelling Techniques Reveals Discrepancy of Diffuse Double Layer Theory at High Ionic Concentrations. J. Pet. Technol. 2022, 12 (2), 461-471.
    (19) Gouaux, E.; MacKinnon, R. Principles of Selective Ion Transport in Channels and Pumps. Science 2005, 310 (5753), 1461-1465.
    (20) Zhu, T.; Kong, Y.; Lyu, B.; Cao, L.; Shi, B.; Wang, X.; Pang, X.; Fan, C.; Yang, C.; Wu, H.; et al. 3D Covalent Organic Framework Membrane with Fast and Selective Ion Transport. Nat. Commun. 2023, 14 (1), 5926.
    (21) Zhang, H.; Hou, J.; Hu, Y.; Wang, P.; Ou, R.; Jiang, L.; Liu, J. Z.; Freeman, B. D.; Hill, A. J.; Wang, H. Ultrafast Selective Transport of Alkali Metal Ions in Metal Organic Frameworks with Subnanometer Pores. Sci. Adv. 4 (2), eaaq0066.
    (22) Wang, A.; Breakwell, C.; Foglia, F.; Tan, R.; Lovell, L.; Wei, X.; Wong, T.; Meng, N.; Li, H.; Seel, A.; et al. Selective Ion Transport through Hydrated Micropores in Polymer Membranes. Nature 2024, 635 (8038), 353-358.
    (23) Perley, G. A. Glasses for Measurement of pH. Anal. Chem. 1949, 21 (3), 394-401.
    (24) Li, H.; Chen, X.; Shen, D.; Wu, F.; Pleixats, R.; Pan, J. Functionalized Silica Nanoparticles: Classification, Synthetic Approaches and Recent Advances in Adsorption Applications. Nanoscale 2021, 13 (38), 15998-16016.
    (25) Dishon, M.; Zohar, O.; Sivan, U. Effect of Cation Size and Charge on the Interaction between Silica Surfaces in 1:1, 2:1, and 3:1 Aqueous Electrolytes. Langmuir 2011, 27 (21), 12977-12984.
    (26) Huo, Q.; Margolese, D. I.; Stucky, G. D. Surfactant Control of Phases in the Synthesis of Mesoporous Silica-Based Materials. Chem. Mater. 1996, 8 (5), 1147-1160.
    (27) Narayan, R.; Nayak, U. Y.; Raichur, A. M.; Garg, S. Mesoporous Silica Nanoparticles: A Comprehensive Review on Synthesis and Recent Advances. Pharmaceutics 2018, 10 (3), 118.
    (28) Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science 1998, 279 (5350), 548-552.
    (29) Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G. D. Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures. J. Am. Chem. Soc. 1998, 120 (24), 6024-6036.
    (30) Alexandridis, P.; Holzwarth, J. F.; Hatton, T. A. Micellization of Poly(ethylene oxide)-Poly(propylene oxide)-Poly(ethylene oxide) Triblock Copolymers in Aqueous Solutions: Thermodynamics of Copolymer Association. Macromolecules 1994, 27 (9), 2414-2425.
    (31) Wanka, G.; Hoffmann, H.; Ulbricht, W. Phase Diagrams and Aggregation Behavior of Poly(oxyethylene)-Poly(oxypropylene)-Poly(oxyethylene) Triblock Copolymers in Aqueous Solutions. Macromolecules 1994, 27 (15), 4145-4159.
    (32) Shang, C.; Liu, Y.; Zeng, X.; Luo, W. J.; Wang, L.; Wang, J. Preparation and Characterization of Organic-Inorganic Hybrid Anion Exchange Membrane Based on Crown Ether Functionalized Mesoporous SBA-NH2. Int. J. Hydrogen Energy 2022, 47 (30), 14141-14157.
    (33) Fernández-Carretero, F. J.; Compañ, V.; Riande, E. Hybrid Ion-Exchange Membranes for Fuel Cells and Separation Processes. J. Power Sources 2007, 173 (1), 68-76.
    (34) Stöber, W.; Fink, A.; Bohn, E. Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range. J. Colloid Interface Sci. 1968, 26 (1), 62-69.
    (35) Elma, M.; Yacou, C.; Diniz da Costa, J. C.; Wang, D. K. Performance and Long Term Stability of Mesoporous Silica Membranes for Desalination. Membranes 2013, 3 (3), 136-150.
    (36) Wamser, C. A. Hydrolysis of Fluoboric Acid in Aqueous Solution. J. Am. Chem. Soc. 1948, 70 (3), 1209-1215.
    (37) Kruk, M.; Jaroniec, M.; Ko, C. H.; Ryoo, R. Characterization of the Porous Structure of SBA-15. Chem. Mater. 2000, 12 (7), 1961-1968.
    (38) Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87 (9-10), 1051-1069.
    (39) Schlumberger, C.; Thommes, M. Characterization of Hierarchically Ordered Porous Materials by Physisorption and Mercury Porosimetry—A Tutorial Review. Adv. Mater. Interfaces 2021, 8 (4), 2002181.
    (40) Candela-Noguera, V.; Amorós, P.; Aznar, E.; Marcos, M. D.; Martínez-Máñez, R. Systematic Study of the Implications of Calcination and Solvent Extraction of the Surfactant in MCM-41-Type Mesoporous Silica Nanoparticles. Microporous Mesoporous Mater. 2024, 373, 113119.
    (41) Barczak, M. Template Removal from Mesoporous Silicas Using Different Methods as a Tool for Adjusting Their Properties. New J. Chem. 2018, 42 (6), 4182-4191.
    (42) Luhmer, M.; d'Espinose, J. B.; Hommel, H.; Legrand, A. P. High-Resolution 29Si Solid-State NMR Study of Silicon Functionality Distribution on the Surface of Silicas. Magn. Reson. Imaging 1996, 14 (7), 911-913.
    (43) Tan, R.; Wang, A.; Malpass-Evans, R.; Williams, R.; Zhao, E. W.; Liu, T.; Ye, C.; Zhou, X.; Darwich, B. P.; Fan, Z.; et al. Hydrophilic Microporous Membranes for Selective Ion Separation and Flow-Battery Energy Storage. Nat. Mater 2020, 19 (2), 195-202.
    (44) Khoder, H.; Siboulet, B.; Ollivier, J.; Baus-Lagarde, B.; Rébiscoul, D. How Cation–Silica Surface Interactions Affect Water Dynamics in Nanoconfined Electrolyte Solutions. J. Phys. Chem. C 2024, 128 (30), 12558-12565.
    (45) Yang, H.; Wu, N. Ionic Conductivity and Ion Transport Mechanisms of Solid-State Lithium-Ion Battery Electrolytes: A Review. Energy sci. eng. 2022, 10 (5), 1643-1671.
    (46) Persson, I. Structure and Size of Complete Hydration Shells of Metal Ions and Inorganic Anions in Aqueous Solution. Dalton Trans. 2024, 53 (37), 15517-15538.
    (47) Kameda, Y.; Maeda, S.; Amo, Y.; Usuki, T.; Ikeda, K.; Otomo, T. Neutron Diffraction Study on the Structure of Hydrated Li+ in Dilute Aqueous Solutions. J. Phys. Chem. B. 2018, 122 (5), 1695-1701.

    無法下載圖示 校內:2030-01-12公開
    校外:2030-01-12公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE