| 研究生: |
王姿華 Wang, Zih-Hua |
|---|---|
| 論文名稱: |
聚賴胺酸嵌段聚芐基半胱胺酸線性共聚胺基酸作為基因載體之合成與評估 Synthesis and Evaluation of Linear poly(L-lysine)-block-poly(Benzyl-L-cysteine) Block Copolypeptides as Gene Carriers |
| 指導教授: |
詹正雄
Jan, Jeng-Shiung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 賴胺酸 、芐基半胱胺酸 、嵌段聚胺基酸 、基因載體 、基因傳遞 |
| 外文關鍵詞: | lysine, cysteine, copolypeptides, gene carriers, gene delivery |
| 相關次數: | 點閱:39 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在合成出生物相容性高且有助於提升基因傳遞效率之載體,使用一級胺、賴胺酸、芐基半胱胺酸作為材料,經由α-胺基酸N-羧酸酐開環聚合法,成功地合成出帶正電且具有雙親性之線性嵌段聚胺基酸(poly(L-lysine)-b-poly(Benzyl-L-cysteine),PLL-b-PBLC),並將賴胺酸改質得到胍化之線性嵌段聚胺基酸(Guanidinylation of PLL-b-PBLC,PLGL-b-PBLC),期待可與帶負電的基因藉由靜電作用力而複合,且易吸附於同樣帶負電的細胞膜,再透過疏水鏈段以及胍基提升複合粒子被細胞攝入體內的機會。以不同成分、聚合度以及嵌段聚合比例設計出不同性質的基因載體。透過1H NMR分析聚胺基酸之聚合度與分子量,而後再經由13C NMR、FT-IR、CD、FL、SAXS鑑定聚胺基酸之改質基團、二級結構、開始聚集濃度、聚集微結構,聚胺基酸之粒徑則是以TEM分析。確立聚胺基酸之基本性質後開始檢驗其溶血性與細胞毒性,以得知聚胺基酸是否具備生物相容性與細胞活性,從結果篩選出PLL10-b-PBLC5、PLL5-b-PBLC5、PLGL5-b-PBLC5執行後續實驗。測定聚胺基酸與基因之複合粒子之Zeta potential以篩選出適當N/P ratio範圍進行轉染,首先以聚胺基酸複合LacZ基因做轉染測試,從結果可以發現複合粒子有助於提升基因傳遞效率,成功建立起轉染系統並應用於p53基因轉染測試,於Cisplatin環境下若細胞含有p53基因將會大量死亡,故以添加Cisplatin前後之細胞存活率檢驗成功表達p53之細胞比例,結果指出N/P ratio 8 PLL10-b-PBLC5與N/P ratio 24 PLL5-b-PBLC5乃最有效提升基因傳遞效率,證實其具有基因載體發展之潛力。
In this study, we develop a series of linear block copolypeptides, that are low toxicity and low hemolysis, as gene carriers. Poly(L-lysine)-block-poly(L-benzyl-cysteine) serves as our polypeptide carrier that is applied to gene therapy. We select the polypeptides with high gene expression through adjusting the structures and properties of polypeptides by varying composition, chain length, and block ratio. The hydrophobic group on the polypeptides could not only reduce toxicity but also enhance cellular uptake due to its non-specific interaction with the cell membrane. The positively charged polypeptides can complex with negatively charged pDNA via electrostatic interactions to form gene carriers. Properties and conformation of polypeptides were confirmed by 1H NMR, 13C NMR, FT-IR and circular dichroism (CD) spectroscopy, pointing out that we successfully synthesized these polypeptides. Investigation of hemolysis and cell viability assays indicated these polypeptides can be great candidates for biomaterial applications. We transfected p53 into cell after using LacZ as reported gene to make sure that these polypeptides can be the candidates of gene carriers, and the results proved complexes succeeded in transfecting DNA.
第六章 參考資料
1. Bergmann, C. P. & Stumpf, A. Biomaterials. in Dental Ceramics: Microstructure, Properties and Degradation 9–13 (Springer Berlin Heidelberg, 2013). doi:10.1007/978-3-642-38224-6_2.
2. Bose, S. & Bandyopadhyay, A. Chapter 1 - Introduction to Biomaterials. in Characterization of Biomaterials (eds. Bandyopadhyay, A. & Bose, S.) 1–9 (Academic Press, 2013). doi:https://doi.org/10.1016/B978-0-12-415800-9.00001-2.
3. Rasines Mazo, A. et al. Ring opening polymerization of α-amino acids: Advances in synthesis, architecture and applications of polypeptides and their hybrids. Chemical Society Reviews (2020) doi:10.1039/c9cs00738e.
4. Habibi, N., Kamaly, N., Memic, A. & Shafiee, H. Self-assembled peptide-based nanostructures: Smart nanomaterials toward targeted drug delivery. Nano Today (2016) doi:10.1016/j.nantod.2016.02.004.
5. Iatrou, H., Dimas, K., Gkikas, M., Tsimblouli, C. & Sofianopoulou, S. Polymersomes from polypeptide containing triblock co- and terpolymers for drug delivery against pancreatic cancer: Asymmetry of the external hydrophilic blocks. Macromolecular Bioscience (2014) doi:10.1002/mabi.201400137.
6. Cabral, H. & Kataoka, K. Progress of drug-loaded polymeric micelles into clinical studies. Journal of Controlled Release (2014) doi:10.1016/j.jconrel.2014.06.042.
7. Kazunori, K., Glenn S., K., Masayuki, Y., Teruo, O. & Yasuhisa, S. Block copolymer micelles as vehicles for drug delivery. Journal of Controlled Release (1993) doi:10.1016/0168-3659(93)90172-2.
8. Mochida, Y. et al. Bundled assembly of helical nanostructures in polymeric micelles loaded with platinum drugs enhancing therapeutic efficiency against pancreatic tumor. ACS Nano (2014) doi:10.1021/nn500498t.
9. Zhang, Y., Chan, H. F. & Leong, K. W. Advanced materials and processing for drug delivery: The past and the future. Advanced Drug Delivery Reviews (2013) doi:10.1016/j.addr.2012.10.003.
10. Pack, D. W., Hoffman, A. S., Pun, S. & Stayton, P. S. Design and development of polymers for gene delivery. Nature Reviews Drug Discovery 4, 581–593 (2005).
11. Zhang, Y., Zhou, Z. & Chen, M. The length of hydrophobic chain in amphiphilic polypeptides regulates the efficiency of gene delivery. Polymers 10, 379 (2018).
12. Zhou, Y. et al. Progress in arginine-based gene delivery systems. Journal of Materials Chemistry B vol. 8 5564–5577 (2020).
13. Zhai, X. et al. Guanidinylation: A simple way to fabricate cell penetrating peptide analogue-modified chitosan vector for enhanced gene delivery. Journal of Applied Polymer Science 121, 3569–3578 (2011).
14. Izawa, H., Kinai, M., Ifuku, S., Morimoto, M. & Saimoto, H. Guanidinylated chitosan inspired by arginine-rich cell-penetrating peptides. International Journal of Biological Macromolecules 125, 901–905 (2019).
15. Ferrari, S., Geddes, D. M. & Alton, E. W. F. W. Barriers to and new approaches for gene therapy and gene delivery in cystic fibrosis. Advanced Drug Delivery Reviews (2002) doi:10.1016/S0169-409X(02)00145-X.
16. Vile, R., Russell, S. J. & Lemoine, N. R. Cancer gene therapy: Hard lessons and new courses. Gene Therapy (2000) doi:10.1038/sj.gt.3301084.
17. Nabel, E. G. Gene therapy for cardiovascular diseases. Journal of Nuclear Cardiology 6, 69–75 (1999).
18. Liu, M. A. DNA vaccines: A review. Journal of Internal Medicine vol. 253 402–410 (2003).
19. Blaese, R. M. et al. T lymphocyte-directed gene therapy for ADA-SCID: Initial trial results after 4 years. Science 270, 475–480 (1995).
20. Khuri, F. R. et al. A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nature Medicine 6, 879–885 (2000).
21. Kay, M. A. et al. Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector. Nature Genetics 24, 257–261 (2000).
22. Cavazzana-Calvo, M. et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288, 669–672 (2000).
23. Vile, R. G., Tuszynski, A. & Castleden, S. Retroviral Vectors: From Laboratory Tools to Molecular Medicines. Applied Biochemistry and Biotechnology - Part B Molecular Biotechnology vol. 5 139–158 (1996).
24. Bulcha, J. T., Wang, Y., Ma, H., Tai, P. W. L. & Gao, G. Viral vector platforms within the gene therapy landscape. Signal Transduction and Targeted Therapy vol. 6 1–24 (2021).
25. During, M. J. Adeno-associated virus as a gene delivery system. Advanced Drug Delivery Reviews vol. 27 83–94 (1997).
26. Caffery, B., Lee, J. S. & Alexander-Bryant, A. A. Vectors for glioblastoma gene therapy: Viral & non-viral delivery strategies. Nanomaterials vol. 9 105 (2019).
27. Bulcha, J. T., Wang, Y., Ma, H., Tai, P. W. L. & Gao, G. Viral vector platforms within the gene therapy landscape. Signal Transduction and Targeted Therapy vol. 6 1–24 (2021).
28. Thomas, C. E., Ehrhardt, A. & Kay, M. A. Progress and problems with the use of viral vectors for gene therapy. Nature Reviews Genetics vol. 4 346–358 (2003).
29. Diallo, J. S. Viral vectors for treatment of human disease: Therapeutic and manufacturing challenges. in Nucleic Acid Nanotheranostics: Biomedical Applications 213–246 (Elsevier, 2019). doi:10.1016/B978-0-12-814470-1.00007-1.
30. Felgner, P. L. et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proceedings of the National Academy of Sciences of the United States of America 84, 7413–7417 (1987).
31. Felgner, P. L. Nonviral strategies for gene therapy. Scientific American 276, 102–106 (1997).
32. Koltover, I., Salditt, T., Rädler, J. O. & Safinya, C. R. An inverted hexagonal phase of cationic liposome-DNA complexes related to DNA release and delivery. Science 281, 78–81 (1998).
33. Zabner, J. Cationic lipids used in gene transfer. Advanced Drug Delivery Reviews vol. 27 17–28 (1997).
34. Filion, M. C. & Phillips, N. C. Major limitations in the use of cationic liposomes for DNA delivery. International Journal of Pharmaceutics 162, 159–170 (1998).
35. Zhou, Z. et al. Nonviral cancer gene therapy: Delivery cascade and vector nanoproperty integration. Advanced Drug Delivery Reviews vol. 115 115–154 (2017).
36. Grigsby, C. L. & Leong, K. W. Balancing protection and release of DNA: Tools to address a bottleneck of non-viral gene delivery. Journal of the Royal Society Interface vol. 7 S67 (2010).
37. Gutfreund, H. Proteins: structures and molecular properties (second edition). FEBS Letters (1993) doi:10.1016/0014-5793(93)81360-c.
38. Branden, C. I. & Tooze, J. Introduction to Protein Structure. Introduction to Protein Structure (2012). doi:10.1201/9781136969898.
39. Buxbaum, E. Fundamentals of protein structure and function. Fundamentals of Protein Structure and Function (2007). doi:10.1007/978-0-387-68480-2.
40. Boyle, J. Lehninger principles of biochemistry (4th ed.): Nelson, D., and Cox, M. Biochemistry and Molecular Biology Education (2005) doi:10.1002/bmb.2005.494033010419.
41. Berg, J., Tymoczko, J. & Stryer, L. Biochemistry, 5th edition. Biochemistry (2002).
42. Woolley, P. Protein stability and folding: Theory and practice. FEBS Letters 379, 196–196 (1996).
43. Schulz, G. E. & Schirmer, R. H. Principles of Protein Structure. (Springer New York, 1979). doi:10.1007/978-1-4612-6137-7.
44. Peter J. Russell. iGenetics : a molecular approach / Peter J. Russell. -- 3rd ed. p. Journal of Physics A: Mathematical and Theoretical (2011).
45. Petsko, G. a. & Ringe, D. Chapter 5 Protein Structure and Function. New Science Press Ltd (2004).
46. Carlsen, A. & Lecommandoux, S. Self-assembly of polypeptide-based block copolymer amphiphiles. Current Opinion in Colloid and Interface Science (2009) doi:10.1016/j.cocis.2009.04.007.
47. Proteins: 1.2 The peptide bond and primary structure of proteins - OpenLearn - Open University - S377_2. https://www.open.edu/openlearn/science-maths-technology/science/biology/proteins/content-section-1.2.
48. Tirrell, D. A., Fournier, M. J. & Mason, T. L. Genetic engineering of polymeric materials. MRS Bulletin (1991) doi:10.1557/S0883769400056505.
49. Deming, T. J. Polypeptide materials: New synthetic methods and applications. Advanced Materials (1997) doi:10.1002/adma.19970090404.
50. Krejchi, M. T. et al. Chemical sequence control of ß-sheet assembly in macromolecular crystals of periodic polypeptides. Science 265, 1427–1432 (1994).
51. Merrifield, R. B. Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide. Journal of the American Chemical Society (1963) doi:10.1021/ja00897a025.
52. Behrendt, R., White, P. & Offer, J. Advances in Fmoc solid-phase peptide synthesis. Journal of Peptide Science (2016) doi:10.1002/psc.2836.
53. Mitchell, A. R. Bruce Merrifield and solid-phase peptide synthesis: A historical assessment. Biopolymers - Peptide Science Section (2008) doi:10.1002/bip.20925.
54. Coin, I., Beyermann, M. & Bienert, M. Solid-phase peptide synthesis: From standard procedures to the synthesis of difficult sequences. Nature Protocols (2007) doi:10.1038/nprot.2007.454.
55. Bayer, E. & Mutter, M. Liquid phase synthesis of peptides. Nature (1972) doi:10.1038/237512a0.
56. Fischer, P. M. & Zheleva, D. I. Liquid-phase peptide synthesis on polyethylene glycol (PEG) supports using strategies based on the 9-fluorenylmethoxycarbonyl amino protecting group: Application of PEGylated peptides in biochemical assays. Journal of Peptide Science (2002) doi:10.1002/psc.413.
57. Brulc, B., Žagar, E., Gadzinowski, M., Slomkowski, S. & Žigon, M. Homo and block copolymers of poly(β-benzyl- L -aspartate)s and poly(γ-benzyl- L -glutamate)s of different architectures. Macromolecular Chemistry and Physics (2011) doi:10.1002/macp.201000710.
58. Deng, C. et al. Functional polypeptide and hybrid materials: Precision synthesis via α-amino acid N-carboxyanhydride polymerization and emerging biomedical applications. Progress in Polymer Science vol. 39 330–364 (2014).
59. Board, E. et al. Topics in Current Chemistry.
60. Cheng, J. & Deming, T. J. Synthesis of polypeptides by ring-opening polymerization of α-Amino acid N-carboxyanhydrides. Topics in Current Chemistry 310, 1–26 (2012).
61. Deming, T. J. Synthesis of Side-Chain Modified Polypeptides. Chemical Reviews vol. 116 786–808 (2016).
62. Kricheldorf, H. R. Polypeptides and 100 years of chemistry of α-amino acid N-carboxyanhydrides. Angewandte Chemie - International Edition vol. 45 5752–5784 (2006).
63. Leuchs, H. & Geiger, W. Ueber eine neue Synthese des Serins. Berichte der deutschen chemischen Gesellschaft 39, 2644–2649 (1906).
64. Leuchs, H. & la Forge, F. B. Über die Isomerie der Carbäthoxyl‐diglycyl‐glycinester und die Beständigkeit von N‐Carbonsäuren. Berichte der deutschen chemischen Gesellschaft 41, 2586–2596 (1908).
65. Leuchs, H. & Geiger, W. Über die Anhydride von α‐Amino‐N‐carbonsäuren und die von α‐Aminosäuren. Berichte der deutschen chemischen Gesellschaft 41, 1721–1726 (1908).
66. Wilder, R. & Mobashery, S. The Use of Triphosgene in Preparation of N-carboxy α-amino Acid Anhydrides. Journal of Organic Chemistry (1992) doi:10.1021/jo00035a044.
67. Daly, W. H. & Poché, D. The preparation of N-carboxyanhydrides of α-amino acids using bis(trichloromethyl)carbonate. Tetrahedron Letters (1988) doi:10.1016/S0040-4039(00)82209-1.
68. Huang, J. & Heise, A. Stimuli responsive synthetic polypeptides derived from N-carboxyanhydride (NCA) polymerisation. Chemical Society Reviews (2013) doi:10.1039/c3cs60063g.
69. Bonduelle, C. Secondary structures of synthetic polypeptide polymers. Polymer Chemistry vol. 9 1517–1529 (2018).
70. Zou, J., He, X., Fan, J., Raymond, J. E. & Wooley, K. L. Supramolecularly knitted tethered oligopeptide/single-walled carbon nanotube organogels. Chemistry - A European Journal 20, 8842–8847 (2014).
71. Wang, Y. & Chang, Y. C. Synthesis and conformational transition of surface-tethered polypeptide: Poly(L-lysine). Macromolecules 36, 6511–6518 (2003).
72. Song, Z. et al. Enzyme-mimetic self-catalyzed polymerization of polypeptide helices. Nature Communications 10, 1–7 (2019).
73. Engler, A. C., Lee, H. il & Hammond, P. T. Highly efficient “grafting onto” a polypeptide backbone using click chemistry. Angewandte Chemie - International Edition 48, 9334–9338 (2009).
74. Priftis, D. et al. Self-Assembly of α-Helical Polypeptides Driven by Complex Coacervation. Angewandte Chemie - International Edition 54, 11128–11132 (2015).
75. Bellomo, E. G., Wyrsta, M. D., Pakstis, L., Pochan, D. J. & Deming, T. J. Stimuli-responsive polypeptide vesicles by conformation-specific assembly. Nature Materials 3, 244–248 (2004).
76. Grahame, D. C. The electrical double layer and the theory of electrocapillarity. Chemical Reviews 41, 441–501 (1947).
77. Park, S. J. & Seo, M. K. Intermolecular Force. Interface Science and Technology vol. 18 (Elsevier, 2011).
78. Goldberg, P. & Riehl, N. Luminescence of Inorganic Solids. Zeitschrift fur Physikalische Chemie (1968) doi:10.1524/zpch.1968.61.5_6.332.
79. Optical Characterization of Semiconductors. Optical Characterization of Semiconductors (Elsevier, 1993). doi:10.1016/c2009-0-21312-2.
80. Kalyanasundaram, K. & Thomas, J. K. Environmental Effects on Vibronic Band Intensities in Pyrene Monomer Fluorescence and Their Application in Studies of Micellar Systems. Journal of the American Chemical Society 99, 2039–2044 (1977).
81. Thomas, J. K. Radiation-Induced Reactions in Organized Assemblies. Chemical Reviews 80, 283–299 (1980).
82. Barry, N. P. E. & Therrien, B. Pyrene: The Guest of Honor. in Organic Nanoreactors: From Molecular to Supramolecular Organic Compounds 421–461 (Elsevier Inc., 2016). doi:10.1016/B978-0-12-801713-5.00013-6.
83. Atomic World - Transmission electron microscope(TEM) - Principle of TEM. http://www.hk-phy.org/atomic_world/tem/tem02_e.html.
84. Laera, S. et al. Measuring protein structure and stability of protein-nanoparticle systems with synchrotron radiation circular dichroism. Nano Letters 11, 4480–4484 (2011).
85. Jackson, M. & Mantsch, H. H. The use and misuse of FTIR spectroscopy in the determination of protein structure. Critical Reviews in Biochemistry and Molecular Biology 30, 95–120 (1995).
86. Nevskaya, N. A. & Chirgadze, Y. N. Infrared spectra and resonance interactions of amide‐I and II vibrations of α‐helix. Biopolymers 15, 637–648 (1976).
87. Kong, J. & Yu, S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochimica et Biophysica Sinica 39, 549–559 (2007).
88. Uzawa, T. et al. Hierarchical folding mechanism of apomyoglobin revealed by ultra-fast H/D exchange coupled with 2D NMR. Proceedings of the National Academy of Sciences of the United States of America 105, 13859–13864 (2008).
89. Ranjbar, B. & Gill, P. Circular dichroism techniques: Biomolecular and nanostructural analyses- A review. Chemical Biology and Drug Design vol. 74 101–120 (2009).
90. 同步輻射圓二色光譜核心設施 (BL04C) 與實驗技術.
91. Bonduelle, C. Secondary structures of synthetic polypeptide polymers. Polymer Chemistry vol. 9 1517–1529 (2018).
92. Dwivedi, D. & Lepková, K. SAXS and SANS Techniques for Surfactant Characterization: Application in Corrosion Science. in Application and Characterization of Surfactants (InTech, 2017). doi:10.5772/intechopen.69290.
93. Murthy, N. S. Recent Developments in Small-Angle X-Ray Scattering. Spectroscopy (2017).
94. Cell culture | 細胞存活率試驗 - ACE Biolabs. https://www.acebiolab.com/TW/news/43.
95. Izawa, H., Kinai, M., Ifuku, S., Morimoto, M. & Saimoto, H. Guanidinylation of chitooligosaccharides involving internal cyclization of the guanidino group on the reducing end and effect of guanidinylation on protein binding ability. Biomolecules (2019) doi:10.3390/biom9070259.
96. Bernatowicz, M. S., Youling, W. & Matsueda, G. R. 1H-Pyrazole-1-carboxamidine Hydrochloride: An Attractive Reagent for Guanylation of Amines and Its Application to Peptide Synthesis. Journal of Organic Chemistry 57, 2497–2502 (1992).
97. Brzozowski, Z., Sa̧czewski, F. & Gdaniec, M. Synthesis, molecular structure and anticancer activity of 1-allyl-3-amino-2-(4-chloro-2-mercaptobenzenesulphonyl)guanidine derivatives. European Journal of Medicinal Chemistry 37, 285–293 (2002).
98. Gottlieb, H. E., Kotlyar, V. & Nudelman, A. NMR chemical shifts of common laboratory solvents as trace impurities. Journal of Organic Chemistry 62, 7512–7515 (1997).
99. Zhai, X. et al. Guanidinylation: A simple way to fabricate cell penetrating peptide analogue-modified chitosan vector for enhanced gene delivery. Journal of Applied Polymer Science 121, 3569–3578 (2011).
100. Hu, Y. et al. Synthesis, characterization and antibacterial activity of guanidinylated chitosan. Carbohydrate Polymers 67, 66–72 (2007).
101. Manavalan, P. & Johnson, W. C. Variable selection method improves the prediction of protein secondary structure from circular dichroism spectra. Analytical Biochemistry 167, 76–85 (1987).
102. Hennessey, J. P. & Johnson, W. C. Information Content in the Circular Dichroism of Proteins. Biochemistry 20, 1085–1094 (1981).
103. Reed, J. & Reed, T. A. A set of constructed type spectra for the practical estimation of peptide secondary structure from circular dichroism. Analytical Biochemistry 254, 36–40 (1997).
104. Cheng, Y. et al. Decisive role of hydrophobic side groups of polypeptides in thermosensitive gelation. Biomacromolecules 13, 2053–2059 (2012).
105. Chou, P. Y. & Pasman, G. D. Conformational Parameters for Amino Acids in Helical, β-Sheet, and Random Coil Regions Calculated from Proteins. Biochemistry 13, 211–222 (1974).
106. Zhang, S., Fu, W. & Li, Z. Supramolecular hydrogels assembled from nonionic poly(ethylene glycol)-b-polypeptide diblocks containing OEGylated poly-l-glutamate. Polymer Chemistry 5, 3346–3351 (2014).
107. ASTM International. Standard Practice for Assessment of Hemolytic Properties of Materials. Practice 2002, 1–5 (2013).
108. Weber, M. et al. Blood-Contacting Biomaterials: In Vitro Evaluation of the Hemocompatibility. Frontiers in Bioengineering and Biotechnology vol. 6 99 (2018).
109. Totea, G., Ionita, D., Demetrescu, I. & Mitache, M. M. In vitro hemocompatibility and corrosion behavior of new Zr-binary alloys in whole human blood. in Central European Journal of Chemistry vol. 12 796–803 (Versita, 2014).
110. Miller, J. B. et al. Non-Viral CRISPR/Cas Gene Editing In Vitro and In Vivo Enabled by Synthetic Nanoparticle Co-Delivery of Cas9 mRNA and sgRNA. Angewandte Chemie - International Edition 56, 1059–1063 (2017).
111. Miyata, K., Nishiyama, N. & Kataoka, K. Rational design of smart supramolecular assemblies for gene delivery: Chemical challenges in the creation of artificial viruses. Chemical Society Reviews 41, 2562–2574 (2012).
112. Kowalski, P. S. et al. Ionizable amino-polyesters synthesized via ring opening polymerization of tertiary amino-alcohols for tissue selective mRNA delivery. Advanced Materials 30, 1801151 (2018).
113. Yamagata, M. et al. Structural advantage of dendritic poly(l-lysine) for gene delivery into cells. Bioorganic and Medicinal Chemistry 15, 526–532 (2007).
114. Plank, C., Tang, M. X., Wolfe, A. R. & Szoka, F. C. Branched cationic peptides for gene delivery: Role of type and number of cationic residues in formation and in vitro activity of DNA polyplexes. Human Gene Therapy 10, 319–332 (1999).
115. Kim, H. J. et al. Fine-Tuning of Hydrophobicity in Amphiphilic Polyaspartamide Derivatives for Rapid and Transient Expression of Messenger RNA Directed Toward Genome Engineering in Brain. ACS Central Science 5, 1866–1875 (2019).
116. Lv, H., Zhang, S., Wang, B., Cui, S. & Yan, J. Toxicity of cationic lipids and cationic polymers in gene delivery. Journal of Controlled Release vol. 114 100–109 (2006).
117. Bexiga, M. G. et al. Cationic nanoparticles induce caspase 3-, 7-and 9-mediated cytotoxicity in a human astrocytoma cell line. Nanotoxicology 5, 557–567 (2011).
118. Walsh, D. P. et al. Bioinspired Star-Shaped Poly(l -lysine) Polypeptides: Efficient Polymeric Nanocarriers for the Delivery of DNA to Mesenchymal Stem Cells. Molecular Pharmaceutics 15, 1878–1891 (2018).
119. Bloomfield, V. A. DNA condensation by multivalent cations. Biopolymers (1997) doi:10.1002/(SICI)1097-0282(1997)44:3<269::AID-BIP6>3.0.CO;2-T.
120. Hansma, H. G. et al. DNA condensation for gene therapy as monitored by atomic force microscopy. Nucleic Acids Research 26, 2481–2487 (1998).
121. Wagner, E., Cotten, M., Foisner, R. & Birnstiel, M. L. Transferrin-polycation-DNA complexes: The effect of polycations on the structure of the complex and DNA delivery to cells. Proceedings of the National Academy of Sciences of the United States of America 88, 4255–4259 (1991).
122. Gary, D. J., Puri, N. & Won, Y. Y. Polymer-based siRNA delivery: Perspectives on the fundamental and phenomenological distinctions from polymer-based DNA delivery. Journal of Controlled Release vol. 121 64–73 (2007).
123. Komarova, E. A. et al. Transgenic mice with p53-responsive lacZ: p53 activity varies dramatically during normal development and determines radiation and drug sensitivity in vivo. EMBO Journal 16, 1391–1400 (1997).