| 研究生: |
謝宗恩 Shi, Tjaun-En |
|---|---|
| 論文名稱: |
二氧化鈦光觸媒降解硝基苯之研究 Photocatalytic degradation of nitrobenzene using titanium dioxide |
| 指導教授: |
黃守仁
Whang, Thou-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系碩士在職專班 Department of Chemistry (on the job class) |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 二氧化鈦 、動力學 、光催化化反應 、硝基苯 |
| 外文關鍵詞: | nitrobenzene, Photocatalysis, Kinetics, Titanium dioxide |
| 相關次數: | 點閱:88 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的目的使用二氧化鈦粉末的固定化技術,能將光催化劑有效固定在石英管上,聚合物溶液是以矽酸乙酯及水為反應物,以1:4混合比於常溫下經過水解及縮聚合反應合成。以此對硝基苯進行光催化反應。探討不同晶形觸媒、不同的pH值、不同的濃度、不同的溫度、不同的溶氧等因素對硝基苯進行光催化反應的影響。
比較兩種商業化觸媒對硝基苯的去除效率,探討其在不同pH值4、7、11環境下,對0.407 mM硝基苯的降解效果,結果兩種觸媒催化速率為pH=7>pH=4>pH=11,又以Degussa P-25在pH=7降解效果最好。
分別以不同濃度0.407、0.813、1.220、1.626、2.439 mM硝基苯,在相同條件下反應3小時,結果為反應物的吸附速率常數Kad=0.024(mg-1L)、光催化反應之速率常數kLH= 0.244(mgL-1min-1)。
不同溫度20、30、40℃下對0.407 mM硝基苯,在相同條件下反應3小時,結果反應活化能Ea=34.45 kJ/mol,活化焓ΔH┿=0.31 kJ/mol、活化熵ΔS┿=-0.041 J/K mol。
通空氣流速分別50 cc/min、100 cc/min、150 cc/min對0.407 mM硝基苯,在相同條件下反應3小時,結果以空氣流速150 cc/min (溶氧量為7.2 ± 0.3 mg/L)的降解效果最好,反應速率常數k= (1.28 ± 0.05) × 10-2 min-1殘餘率8 %為效果最好。
以1.626 mM硝基苯,在pH=7以懸浮方式添加觸媒P-25二氧化鈦1.0 g,通空氣150 cc/min及溫度30℃的控制條件下,用鋁箔紙覆蓋反應器進行光催化10小時後,經HPLC、GCMS定性、定量分析,得到其主要中間產物主要為2-nitrophenol、3-nitrophenol、4-nitrophenol及一些未知化合物。
It is an important challenge to search a powerful and efficient pathway to degrade adverse chemicals or waste water. In this study we used immobilization powdered titanium dioxide coated on a cylindrical quartz tube to degrade nitrobenzene and alter the environmental condition in a simulated system. Variations of nitrobenzene concentration, pH value, temperature, and dissolving oxygen were studied.
Two types of commercial titanium dioxides, Degussa P-25 and Hombikat UV-100, were compared each other in the degradation efficiency of nitrobenzene. It is shown that two commercial titanium dioxides have the same reaction rate constant of pH in the order of 7 > 4 > 11 in a 3-hour degradation of 0.407 mM nitrobenzene in the origin. Moreover, Degussa P-25 has the best photodegradation efficiency in the solution of pH = 7.
For the study of concentration variation, the adsorption coefficient Kad and the reaction rate constant kLH were obtained to be 0.024 L/mg and 0.024 mg/L.min, respectively, with the concentration of nitrobenzene in 0.407, 0.813, 1.220, 1.626, and 2.439 mM.
In the temperature variation study, the reaction activation energy Ea, the enthalpy of activation H┿, and the entropy of activation S┿ were obtained to be 34.45 kJ/mol, =0.31 kJ/mol, and =-0.041 J/K.mol, respectively, with the concentration 0.407 mM of nitrobenzene under different temperatures of 20, 30, and 40oC.
We also tested the influence of the aeration in the reactor. It is shown that the greater degradation the more amount of air flow rate. In the largest amount of air flow rate of 150 mL/min used in the study, oxygen dissolved in the solution was detected to be 7.2 ± 0.3 mg/L. The reaction rate constant k was obtained to be 1.28 x 10-2 ± 0.05 min-1 in a 3-hour reaction for the residual of 8 %.
In the reaction condition of followings, 1.626 mM of nitrobenzene, pH=7, 30 oC, 150 mL/min of air flow rate for a 10-hour reaction, we identified some intermediates of 2-nitrophenol, 3-nitrophenol, 4-nitrophenol, and some other unknown chemical compounds by means of HPLC and GCMS instrumentation.
1.施敏著&黃調元 譯,半導體元件物理與製作技術,國
立 交通大學出版社,二版,台北,(2000).
2.Sakata, T., Kawai, T., Modern Ceramic
Engineering. Marcel Dekker, Inc. New York, 223
(1983)
3.王雲珍,半導體,亞東書局 (1992)
4.卓靜哲,何瑞文,黃守仁,施良垣,蘇世剛,物理化學,三民
書局, 507-508 (1994)
5.Hoffmann, M. R., S. T. Martin, W. Choi, and
Bahnemann,“Environmental Applications of
Semiconductor Photocatalysis”, Chem. Rev. 95
69-96 (1995)
6.Rominder, P. S., J. Lin, D. W. Hand, J. C.
Crittenden, D. L. Perram, and M. E. Mulins, “Heterogeneous Photocatalytic Oxidation of
Hazardous Organic Contaminants in Water”,
Water Environment Research. 65 655-673 (1993)
7.Martin, S .T., Hermann, H. and Hoffmann, M.R.,
“Time-Resolved Microwave Conductivity. Part 2
Quantum-sized TiO2 and the Effect of Adsorbates
and Light Intensity on Charge-Carrier
Dynamics”, J. Chem. Soc. Faraday Trans. 90
3323-3330 (1994)
8.Okamoto, K., Y. Yasunori, T. Hirok, T. Masashi, and T. Akira, “Heterogeneous
Photocatalytic Decomposition of Phenol over TiO2 Powder”, Bull. Chem. Soc.
Jpn. 58 2015-2022 (1985)
9.A. Fujishima, K. Honda, “Electrochemical Photolysis of Water at a
Semiconductor Electrode”, Nature .238 37-38 (1972)
10.Linsebigler A. L., Lu G., Tates Jr. J. T., “Photocatalysis on TiO2
Surfaces: Principles, Mechanisms, and Selected Results”, Chem. Rev. 95 735-
758 (1995)
11.Jeremy K. Burdett, Timothy Hughbanks, Gordon J. Miller, James W.Richardson,
and Joseph V. Smith, “Structural-Electronic Relationships in Inorganic
Solids: Powder Neutron Diffraction Studies of the Rutile and Anatase
Polymorphs of Titanium Dioxide at 15 and 295 K”, J. Am.Chem. Soc. 109 3639-
3646 (1987)
12.Sclafain, A., L. Palmisano, and M. Schiavello, “Influence of the
Preparation Methods of TiO 2 on the Photocatalytic Degradation of Phenol in
Aqueous Dispersion”, J. Phys. Chem. 94 829-832 (1990)
13.A. Sclafani, J. H. Herrmann, “Comparison of the Photoelectronic and
Photocatalytic Activities of Various Anatase and Rutile Forms of Titania in
Pure Liquid Organic Phases and in Aqueous Solutions”, J. Phys. Chem. 100
13655-13661 (1996)
14.R.A.Alberty and R.J.Silbey, Physical Chemistry, John Wiely & Sons, New York,
(1995)
15.A.Mills, S.L.Hunte,“An overview of semiconductor photocatalysis”, Journal
of Photochemistry and Photobiology A: Chemistry.108 1-35 (1997).
16.Jang, K.H., Lee, J.Y., andKim, H.S. “Biodegradation of nitrobenzene through
a hybrid pathway in pseudomonas putida”, Biotechnology and
Bioenginneering.48 625-630 (1995)
17.Oh,T.S., and Bartha, R. “Removal of nitrobenzene vapors by a tricking air
biofilter”, J.Indu.Micro.&Biotechnol.18 293-296 (1997)
18.http;//www.twdep.gov.tw/ 環保署毒物資料庫 (2005)
19.Rajesh J. Tayade, Ramchandra G. Kulkarni, and Raksh. V. Jasra,
“Photocatalytic Degradation of Aqueous Nitrobenzene by Nanocrystalline
TiO2”, Ind. Eng. Chem. Res. 45 922-927 (2006)
20.A.J. Maria, K.L. Yeung,“ Gas-phase photo-oxidation of toluene using
nanometer-size TiO2 catalysts”, Applied Catalysis B: Environmental. 29 327-
336 (2001)
21.Turchi, C. S. and D. F. Ollis, “Mixed Reactant Photocatalysis:
Intermediates and Mutual Rate Inhibition”, J. Catal. 119 483-496 (1989)
22.Davis, R. J., J. L. Gainer, G. O'Neal, and I. W. Wu, “Photocatalytic
Decolorization of Wastewater Dyes”, Water Environment Research. 66 50-53
(1994)
23.M. R. Dhananjeyan, R. Annapoorani, R. Renganathan, “A comparative study on
the TiO2 mediated photo-oxidation of uracil, thymine and 6-methyluracil”
, Journal of Photochemistry and Photobiology A: Chemistry. 109 147-153 (1997)
24.Sanjay P Kamble, Sudhir B Sawant and Vishwas G Pangarkar “Photocatalytic
degradation of m-dinitrobenzene by illuminated TiO2 in a slurry
photoreactor”, J Chem Technol Biotechnol .81 365-373 (2006)
25.Grzechulska Joanna, Morawski Antoni Waldemar “Photocatalytic decomposition
of azo-dry acid black 1 in water over modified titaniumdioxide”, Applied
Catalysis B: Environmental.36 45-51 (2002)
26.Ksibi, M., Zemzemi, A., Boukchina, R., “Photocatalytic degradability of
substituted phenols over UV irradiated TiO2”, Journal of Photochemistry and
Photobiology A: Chemistry. 159 61-70 (2003)
27.Bekkouche, S., Bouhelassa, M., Hadj Salah, N., Meghlaoui F.Z., “Study of
adsorption of phenol on titanium oxide (TiO2)”, Desalination. 166 355-362
(2004)
28.San, N., Hatipoğlu, A., Koçtürk, G., and Çınar, Z., “ Photocatalytic
degradation of 4-nitrophenol in aqueous TiO2 suspensions: Theoretical
prediction of the intermediates”, Journal of Photochemistry and
Photobiology A: Chemistry.146 189-197 (2002)
29.Kiriakidou, F., Kondarides, D. I., and Verykios, X. E., “ The effect of
operational parameters and TiO2-doping on the photocatalytic degradation of
azo-dyes”, Catalysis Today.54 119-130 (1999)
30.Molinari, R., Pirillo, F., Falco, M., Loddob, V., Palmisano, L.,
“Photocatalytic degradation of dyes by using a membrane reactor”, Chemical
Engineering and Processing.43 1103-1114 (2004)
31.Wang, Y. and Hong, C. S., “ TiO2-mediated photomineralization of 2-
chlorobiphenyl: the role of O2”, Water Research.34 2791-2797 (2000)
32.莊連春、林何印、黃欣栩、曾迪華., “UV/TiO2 程序光解柳酸及單氯苯之研究”,第28
屆廢水處理技術研討會 (2003)
33.Chhor, K. Bocquet, J. F. Colbeau-Justin, C., “Comparative studies of phenol
and salicylic acid photocatalytic degradation: influence of adsorbed
oxygen”, Materials Chemistry and Physics. 86 123-131 (2004)
34.Fukuzawa, K. S., and Kwan, T., “Photoadsorption and Photodesorption of
Oxygen on Titanium Dioxide”, J. Catalysis.11 364-369 (1968)
35.Chen, D. and Ray, A. K., “ Photodgradation kinetics of 4-nitrophenol in
TiO2 suspension”, Water Research.32 3223-3234 (1998)
36.N. Daneshvar, M. Rabbani, N. Modirshahla, M.A. Behnajady “Kinetic modeling
of photocatalytic degradation of Acid Red 27 in UV/TiO2 process”, Journal of
Photochemistry and Photobiology A: Chemistry.168 39–45 (2004)
37.Bessekhouad, Y., Robert, D., Weber, J.V., “Synthesis of photocatalytic TiO2
nanoparticles: optimization of the preparation conditions”, Journal of
Photochemistry and Photobiology A: Chemistry.157 47-53 (2003)
38.Mazzarino, I, Piccinini, P.and Spinell, L., “Degration of Organic
Pollutants in Water by Photochemical Reactors”, Catalysis Today .48 315-321
(1999)
39.Lars, A. and M. Alison, “Surface Vacancies in CVD Diamond”, Diamond and
Related Materials.7 261-265 (1998)
40.Borio, O., Gawlik, B. M., Bellobono, I. R. and Muntau, H. , “Photooxidation
of Prometryn and Prometon in Aqueous Solution By Hydrogen Peroxide On
Photocatalytic Membrane Immobilising Titanium Dioxide”, Chemosphere .37 975-
989 (1998)
41.Varshneya, A.K., “Fundamentals of Inorganic Glasses”, (1993)
42.Klein, L.C., “Sol-gel Technology for Thin Films, Fibers, Preforms,
Electronics, and Specialty Shapes”, Parj Ridge, New Jersey, U.S.A (1988)
43.Brinker, C.J. and Scherer C.W., “Sol-gel Science”, Academic press limited.
Loadon, U.K. (1990)
44.Fox M. A. and Dulay M. T., “ Heterogeneous photocatalysis”, Chem.Rev. 93
341-357 (1993)
45.Herrmann, J. M., “Heterogeneous photocatalysis: an emerging discipline
involving multiphase systems”, Catalsis Today.24 157-164 (1995)
46.Chen, J.W., Kong, L.R., Zhu, C.M., Huang, Q.G.and Wang, L.S., “Correlation
between Photolysis Rate Constants of Polycyclic Aromatic Hydrocarbons and Frontier Molecular Orbital Energy”, Chemosphere. 33 1143-1150 (1996)
47.卓靜哲,何瑞文,黃守仁,施良垣,蘇世剛,物理化學,三民書局, 560-561 (1994)
48.掌軒, “以低溫燒結法製作二氧化鈦光觸媒薄膜的探討”,元智大學化學工程所碩士論
文 (2004)
49.I. Kosacki, V. Petrovsky, and H. U. Anderson, “ Band gap energy in
nanocrystalline ZrO2: 16% Y thin films ”, Applied Physics Letters. 74 341-
343 (1999)
50.H. Fujii, M. Ohtaki, and K. Eguchi, “ Synthesis and Photocatalytic Activity
of Lamellar Titanium Oxide Formed by Surfactant Bilayer Templating”, J. Am.
Chem. Soc. 120 6832-6833 (1998)
51.張立德、牟季美,奈米材料和奈米結構。滄海書局發行, (2001)
52.Spurr, R. A.; Myers, H. Quantitative, “Analysis of Anatase-Rutile Mixture
with an X-ray Diffractometer”, Anal. Chem. 29 760-762 (1957)
53. World Health OrganizationGeneva 2003, 25 (2004)
54.Mokrini, A., Ousse, D., and Esplugas, S, “Oxidation of aromatic compounds
with UV radiation/ozone/hydrogen peroxide”, Wat. Sci. Tech. 35 95-102 (1997)
55.Jean-Marie Herrmann, Chantal Guillard, Jean Disdiera, Corinne Lehaut, Sixto
Malato, Julian Blanco, “New industrial titania photocatalysts for the solar
detoxification of water containing various pollutants”, Applied Catalysis
B: Environmental 35 281–294 (2002)
56.E. Pelizzetti and C. Minero, “Mechanism of The Photo-oxidative Degradation
of Organic Pollutants over TiO2”, Electrochimica Acta.38 47-55 (1993)
57.Dhananjay S. Bhatkhande, Sanjay P. Kamble, Sudhir B. Sawant, Vishwas G.
Pangarkar, “Photocatalytic and photochemical degradation of nitrobenzene
using artificial ultraviolet light”, Chemical Engineering Journal. 102 283-
290 (2004)
58.荒田一志、松橋博美http://www.chem.hak.hokkyodai.ac.jp/catal/kiki1.pdf
59.Miray Bekbolet, Altan Serif Suphandag, Ceyda Senem Uyguner, “An
investigation of the photocatalytic efficiencies of TiO2 powders on the
decolourisation of humic acids ”, Journal of Photochemistry and Photobiology
A: Chemistry 148 121-128 (2002)
60.Leng Wenhua, Liu Hong, Cheng Sao’an, Zhang Jianqing, Cao Chunan , “
Kinetics of photocatalytic degradation of aniline in water overTiO2
supported on porous nickel”, Journal of Photochemistry and Photobiology A:
Chemistry 131 125–132 (2000)
61.Nevim San, Arzu Hatipo glu, Gülin Koctürk, Zekiye Cınar, “Photocatalytic
degradation of 4-nitrophenol in aqueous TiO2 suspensions: Theoretical
prediction of the intermediates”, Journal of Photochemistry and
Photobiology A: Chemistry 146 189–197 (2002)
62.Rita Terzian, Nick Serpone,“ Hetergeneous photocatalyzed oxidation of
creosote components: mineralization of xylenols by illuminated TiO2 in
oxygenated aqueous media”, Photochemistry and Photobiology A: Chemistry 89
163–175 (1995)