簡易檢索 / 詳目顯示

研究生: 柯志遠
Ko, Chih-Yuan
論文名稱: 熱碳還原法生長Si1-xGexOy奈米線及Ge/Si1-xGexOy, GeO2/Si1-xGexOy核-殼奈米線
Growth of Si1-xGexOy nanowires, and Ge/Si1-xGexOy, and GeO2/Si1-xGexOy core-shell nanowires via carbothermal reduction
指導教授: 林文台
Lin, Wen-Tai
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 108
中文關鍵詞: 繩狀奈米線中空管鏈條線熱碳還原核-殼奈米線
外文關鍵詞: cord-like nanowires, tubes, chain-like wires, carbothermal reduction, core-shell nanowires
相關次數: 點閱:54下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討在溫度1050℃-1100℃及Ar氣氛下,Si基板上SiO2層的生成及CuO粉末的添加對以熱碳還原GeO2粉生長Ge-Si1-xGexOy及GeO2-Si1-xGexOy核-殼奈米線(底下以奈米線稱之)的影響。無添加CuO粉末時,僅在SiO2/Si基板上生成Ge-Si1-xGexOy奈米線,於Si基板上並無奈米線生成。當添加CuO粉末時,可促進Ge-Si1-xGexOy及GeO2-Si1-xGexOy奈米線在Si基板生長及GeO2-Si1-xGexOy奈米線在SiO2/Si基板生長。這些奈米線是經由VS生長機制生長。目前結果顯示,Si基板的氧化對以熱碳還原GeO2粉末生長Ge-Si1-xGexOy及GeO2-Si1-xGexOy的成長扮演著重要角色。在此探討Si及SiO2基板上,在 Si1-xGexOy奈米線核心生長Ge或GeO2結晶的機制。
    另外,在溫度1100℃以熱碳還原GeO2/CuO粉末,於Si基板上除了Ge-Si1-xGexOy及GeO2-Si1-xGexOy奈米線生成外,還有繩狀奈米線、中空管及鏈條線形成,其化學組成為Si、Ge及O。中空管(tube)及鏈條線也是由許多Si1-xGexOy奈米線組成。繩狀奈米線、中空管及鏈條線的生長是以CuSiGe和SiGe催化的VLS機制控制,其中Ge、Si及Cu是由氣相提供。對於中空管及鏈條線其Si1-xGexOy奈米線是在液滴下半球表面成核成長,成核點不包含下球面的中心區域,所以當Si1-xGexOy奈米線不斷的生長時,液滴被抬起往上移動,形成管狀結構。
    鏈條線其直徑粗細呈現週期性的變化,生長過程可以根據反饋機制(feedback mechanism)的週期性不穩性來解釋。隨著鏈條線的成長,最後會轉變成為中空管。對較大直徑的線,其週期不穩定性的消失,可歸因於Gibbs-Thomson效應使得在氣-液界面的氣相過飽和度減少。在本研究中所生長之中空管,可以歸類為擁有較大波長的鏈條線。

    The effects of a grown SiO2 layer on the Si substrate and the CuO additive in GeO2 powders on the enhanced growth of Ge-Si1-xGexOy and GeO2-Si1-xGexOy core-shell nanowires via carbothermal reduction at 1050-1100℃ in flowing Ar were studied. Without adding CuO into GeO2 powders only Ge-Si1-xGexOy nanowires were grown on the SiO2/Si substrate, while no nanowires could be grown on the Si substrate. Adding CuO into GeO2 powders enhanced the growth of GeO2-Si1-xGexOy and Ge-Si1-xGexOy nanowires on the Si substrate as well as that of GeO2-Si1-xGexOy nanowires on the SiO2/Si substrate. The growth of nanowires follows the vapor-solid process. The present studies reveal that the oxidation of the Si substrate plays an important role in enhancing the growth of Ge-Si1-xGexOy and GeO2-Si1-xGexOy nanowires via carbothermal reduction of GeO2 powders. The mechanisms for precipitation of Ge and GeO2 cores in the Si1-xGexOy nanowires on Si and SiO2 substrates are discussed, respectively.
    Upon carbothermal reduction of GeO2/CuO powders at 1100℃, not only the Ge-Si1-xGexOy and GeO2-Si1-xGexOy nanowires but also the cord-like nanowires, tubes, and chain-like wires with the chemical compositions of Si, Ge, and O were grown on the Si substrate. The tubes and chain-like wires are also composed of many Si1-xGexOy nanowires. The growth of cord-like nanowires, tubes, and chain-like wires is govern by the CuSiGe- and SiGe-catalyzed vapor-liquid-solid mechanisms, where Ge, Si, and Cu are fed from the vapor phase. For the tubes and chain-like wires the nucleation and growth of Si1-xGexOy nanowires occur on the lower surface of the droplet except the central region. As growth continues the nanowires exert a force to lift the droplet upward, forming a tubular structure.
    The diameters of the chain-like wires are periodically modulated. Their growth may be explained in terms of the periodic instability using the feedback mechanism. As the chain-like wire grows up, it can eventually grow into a microtube without periodic instability. The suppression of the periodic instability for the wires with larger diameter may be attributed to the decrease of the vapor supersaturation at the vapor-liquid interface due to the Gibbs-Thomson effect. In the present study, the tube can be specified as the chain-like wire with a very large wavelength.

    本文目錄 中文摘要----------------------------------------------------------------------I 英文摘要---------------------------------------------------------------------II 誌謝感言--------------------------------------------------------------------III 本文目錄----------------------------------------------------------------------V 圖目錄---------------------------------------------------------------------VIII 第一章 奈米材料簡介---------------------------------------------------------1 1.1 前言---------------------------------------------------------------------1 1.2 奈米效應------------------------------------------------------------------2 1.2.1 奈米表面效------------------------------------------------------------2 1.2.2 量子尺寸效應----------------------------------------------------------3 1.2.3 量子穿隧效應--------------------------------------------------------4 1.3 一維奈米材料------------------------------------------------------------5 第二章 基本理論--------------------------------------------------------------8 2.1 文獻回顧----------------------------------------------------------------8 2.1.1 奈米線合成技術------------------------------------------------------8 Solvothermal法---------------------------------------------------------8 雷射蒸鍍(laser ablation)------------------------------------------------------9 化學氣相沉積(chemical vapor deposition)---------------------------------------9 熱蒸鍍(thermal evaporation)--------------------------------------------------10 熱碳還原(carbothermal reduction)---------------------------------------------12 模板輔助(template-assisted)--------------------------------------------------12 溶膠-凝膠法(sol-gel) --------------------------------------------------------13 2.1.2 奈米線生長機制-----------------------------------------------------14 Vapor-Liquid-Solid (VLS) ---------------------------------------------14 Oxide-Assisted Growth (OAG) ------------------------------------------16 Vapor-Solid (VS) -----------------------------------------------------17 Solution-Liquid-Solid ------------------------------------------------18 2.1.3 鏈條線生長機制-----------------------------------------------------19 2.2 儀器原理---------------------------------------------------------------20 2.2.1 掃瞄式電子顯微鏡---------------------------------------------------20 2.2.2 掠角X光繞射儀------------------------------------------------------21 2.2.3 穿透式電子顯微鏡---------------------------------------------------22 2.2.4 X光能量散佈分析儀-------------------------------------------------23 2.2.5 光子激發光譜儀分析-------------------------------------------------23 2.2.6 拉曼光譜分析儀-----------------------------------------------------25 2.3 研究動機 --------------------------------------------------------------25 第三章 實驗步驟與方法-------------------------------------------------------28 3.1 實驗設備及流程 --------------------------------------------------------28 3.2 基板清洗與TEM試片製備--------------------------------------------------29 3.2.1 基板清洗 ---------------------------------------------------------29 3.2.2 TEM試片製備-------------------------------------------------------29 3.3 實驗分析 --------------------------------------------------------------29 3.3.1 掃瞄式電子顯微鏡分析-----------------------------------------------29 3.3.2 低掠角X光繞射分析--------------------------------------------------30 3.3.3 穿透式電子顯微鏡分析-----------------------------------------------30 3.3.4 微光致螢光/拉曼光譜儀分析----------------------------------------------30 第四章 結果與討論-----------------------------------------------------------31 1. 核-殼奈米線(core-shell nanowire)-----------------------------------------31 1.1 熱碳還原GeO2粉末在Si及SiO2基板上生長奈米線-----------------------------31 1.2 熱碳還原GeO2/CuO粉末在Si及SiO2基板上生長奈米線-------------------------32 1.3 奈米線生長機制探討 ----------------------------------------------------33 1.3.1 以GeO2/C粉末在SiO2基板上生長奈米線---------------------------------33 1.3.2 添加CuO於GeO2/C粉末中於Si和SiO2基板上生長奈米線--------------------34 1.4 Raman及PL -------------------------------------------------------------35 1.5 製程參數對奈米線生長的影響---------------------------------------------36 1.5.1 生長溫度-----------------------------------------------------------36 1.5.2 生長時間-----------------------------------------------------------37 1.5.3 氬氣流量 ----------------------------------------------------------38 1.5.4 混合粉末中碳含量---------------------------------------------------39 1.5.5 混合粉末中CuO含量--------------------------------------------------40 1.5.6 氧分壓-----------------------------------------------------------------41 2. Si1-xGexOy鏈條線、管及繩狀奈米線的生長-----------------------------------42 2.1 繩狀奈米線(cord-like nanowires)----------------------------------------43 2.2 中空管型(tube)----------------------- ---------------------------------43 2.3 鏈條結構(chain-like structure) ----------------------------------------43 2.4 Si1-xGexOy結構生長機制探討---------------------------------------------44 2.4.1 繩狀奈米線(cord-like nanowires)------------------------------------44 2.4.2 鏈條線及中空管(chain-like wires、tubes)----------------------------45 2.4.3 氧分壓的影響 ------------------------------------------------------46 第五章 結論-----------------------------------------------------------------48 參考文獻---------------------------------------------------------------------50

    參考文獻
    1.R. Feynman, “Plenty of Room at the Bottom”, APS Annual Meeting (1959)
    2.馬振基, “奈米材料科技原理與應用”, 全華科技 (2003)
    3.B. Z. Zhan, M. A. White, T. K. Sham, J. A. Pincock, R. J. Doucet, K. V. R. Rao, K. N. Robertson, and T. S. Cameron, J. Am. Chem. Soc. 125, 2195 (2003)
    4.張立德, “奈米材料”, 五南出版社 (2002)
    5.W. Barthlott and C. Neinhuis, Planta 202, 1 (1997)
    6.C. Neinhuis and W. Barthlott, Ann. Bot. 79, 667 (1997)
    7.R. Kubo, J. Phys. Soc. Jpn. 17, 975 (1962)
    8.R. Eisberg and R. Resnick, “Quantum Physics of atoms, molecules, solids, nuclei, and particles”, 2nd ed., New York:Wiley, pp.199 (1985)
    9.陳貴賢, 吳季珍, “物理雙月刊”, 23, 609 (2001)
    10.S. Iijima, Nature 354, 56 (1991)
    11.N. G. Chopra, R. J. Luyken, K. Cherrey, V. H. Crespi, M. L. Cohen, S. G. Louie, and A. Zettl, Science 269, 966 (1995)
    12.M. Terrones, W. K. Hsu, H. Terrones, J. P. Zhang, S. Romas, J. P. Hare, R. Castillo, K. Prassides, A. K. Cheetham, H. W. Kroto, and D. R. M. Walton, Chem. Phys. Lett. 259, 568 (1996)
    13.K. Haraguchi, K. Hiruma, T. Katsuyama, K. Tominaga, M. Shirai, and T. Shimada, Appl. Phys. Lett. 69, 386 (1996)
    14.D. Routkevitch, A. A. Tager, J. Haruyama, D. Almawlawi, M. Moskovits, and J. M. Xu, IEEE Trans. Electron Devices 43, 1646 (1996)
    15.K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Haraguchi, M. Koguchi, and H. Kakibayashi, J. Appl. Phys. 77, 447 (1995)
    16.W. Han, S. Fan, Q. Li, and Y. Hu, Science 277, 1287 (1997)
    17.Z. G. Bai, D. P. Yu, H. Z. Zhang, Y. Ding, Y. P. Wang, X. Z. Gai, Q. L. Hang, C. C. Xiong, and S. Q. Feng, Chem. Phys. Lett. 303, 311 (1999)
    18.H. Dai, E. W. Wang, Y. Z. Lu, S. S. Fang, and C. M. Lieber, Nature 375, 769 (1995)
    19.L. C. Qin, X. Zhao, K. Hirahara, Y. Miyamoto, Y. Ando, and S. Iijima, Nature 408, 50 (2000)
    20.Frederick C. K. Au, K. W. Wong, Y. H. Tang, Y. F. Zhang, I. Bello, and S. T. Lee, Appl. Phys. Lett. 75, 1700 (1999)
    21.Y. Li, G. W. Meng, and L. D. Zhang, and F. Phillipp, Appl. Phys. Lett. 76, 2011 (2000)
    22.Y. Saito, S. Uemura, Carbon 38, 169 (2000)
    23.M. Hirakawa, S. Sonoda, C. Tanaka, H. Murakami, H. Yamakawa, Appl. Surf. Sci. 169-170, 662 (2001)
    24.S. M. Lee, K. S. Park, Y. C. Chai, Y. S. Park, J.M. Bok, D. J. Bae, K. S. Nahm, Y. G. Choi, S. C. Yu, N. Kim, T. Frauenheim, Y. H. Lee, Synth. Met. 113, 209 (2000)
    25.R. T. Yang, Carbon 38, 623 (2000)
    26.J. Hu, T. W. Odom, and C. M. Lieber, Acc. Chem. Res. 32, 435 (1999)
    27.C. L. Cheung, J. H. Hafner, T. W. Odom, K. Kim, and C. M. Lieber, Appl. Phys. Lett. 76, 3136 (2000)
    28.H. Dai, J.H. Hafner, A. G. Rinzler, D. T. Colbert, R. E. Smalley, Nature 384, 147 (1996)
    29.W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, and J. M. Kim, Appl. Phys. Lett. 75, 3129 (1999)
    30.T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C. L Cheung, and C. M. Lieber, Science 289, 94 (2000)
    31.J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, and H. Dai, Science 287, 622 (2000)
    32.J. Kong, M. G. Chapline, H. Dai, Adv. Mater. 13, 1384 (2001)
    33.X. Duan, Y. Huang, Y. Cui, J. Wang, C. M. Lieber, Nature 409, 66 (2001)
    34.M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001)
    35.Y. Cui, Q. Wei, H. Park, and C. M. Lieber, Science 293, 1289 (2001)
    36.Y. Q. Zhu, W. B. Hu, W. K. Hsu, M. Terrones, N. Grobert, T. Karali, H. Terrones, J.P. Hare, P.D. Townsend, H.W. Kroto, and D.R.M. Waltson, Adv. Mater. 11, 844 (1999)
    37.A. P. Alivisatos, Science 271, 933 (1996)
    38.F. Marlow, M. D. McGehee, D. Zhao, B. F. Chmelka, and G. D. Stucky, Adv. Mater. 11, 632 (1999)
    39.D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z.G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, and S. Q. Feng, Appl. Phys. Lett. 73, 3076 (1998)
    40.J. Niu, J. Sha, N. Zhang, Y. Ji, X. Ma, and D. Yang, Physica E 23, 1 (2004)
    41.Z. Q. Liu, S. S. Xie, L. F. Sun, D. S. Tang, W. Y. Zhou, C. Y. Wang, W. Liu, Y. B. Li, X. P. Zou, and G. Wang, J. Mater. Res. 16, 683 (2001)
    42.J. J. Wu, T. C. Wong, and C. C. Yu, Adv. Mater. 14, 1643 (2002)
    43.Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, J. Am. Chem. Soc. 124, 1817 (2002)
    44.M. Paulose, O. K. Varghese, and C. A. Grimes, J. Nanosci. Nanotech. 3, 341 (2003)
    45.S. H. Sun, G. W. Meng, M.G. Zhang, Y. F. Hao, X. R. Zhang, and L. D. Zhang, J. Phys. Chem. B 107, 13029 (2003)
    46.K. H. Lee, H. S. Yang, K. H. Baik, J. Bang, R. R. Vanfleet, and W. Sigmund, Chem. Phys. Lett. 383, 380 (2004)
    47.R. Ma and Y. Bando, Chem. Phys. Lett. 377, 177 (2003)
    48.J. L. Elechiguerra, J. A. Manriquez, and M. J. Yacaman, Appl. Phys. A 79, 461 (2004)
    49.B. T. Park and K. Yong, Nanotechnology 15, S365 (2004)
    50.K. H. Lee, S. W. Lee, R. R. Vanfleet, and W. Sigmund, Chem. Phys. Lett. 376, 498 (2003)
    51.Z. Zhang, Y. Zhao, and J. Liu, J. Phys.: Condens. Matter 15, L505 (2003)
    52.N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, I. Bello, and S. T. Lee, Chem. Phys. Lett. 299, 237 (1999)
    53.J. L. Gole and J. D. Stout, W. L. Rauch, and Z. L. Wang, Appl. Phys. Lett. 76, 2346 (2000)
    54.Z. L. Wang, R. P. Gao, J. L. Gole, and J. D. Stout, Adv. Mater. 12, 1938 (2000)
    55.Y. Zhang, N. Wang, R. He, J. Liu, X. Zhang, and J. Zhu, J. Crystal Growth 233, 803 (2001)
    56.B. K. Teo, C. P. Li, X. H. Sun, N. B. Wong, and S. T. Lee, Inorg. Chem. 42, 6723 (2003)
    57.Z. L. Wang, Z. R. Dai, R. P. Gao, Z. G. Bai, and J. L. Gole, Appl. Phys. Lett. 77, 3349 (2000)
    58.K. S. Wenger, D. Cornu, F. Chassagneux, T. Epicier, and P. Miele, J. Mater. Chem. 13, 3058 (2003)
    59.F. L. Deepak, G. Gundiah, M. M. Seikh, A. Govindaraj, and C. N. R. Rao, J. Mater. Res. 19, 2216 (2004)
    60.S. Kar and S. Chaudhuri, Solid State Commun. 133, 151 (2005)
    61.S. H. Li, X. F. Zhu, Y. P. Zhao, J. Phys. Chem. B 108, 17032 (2004)
    62.Y. C. Lin and W. T. Lin, Nanotechnology 16, 1648 (2005)
    63.M. Zacharias and P. M. Fauchet, J. Non-Cryst. Solids 227-230, 1058 (1998)
    64.A. Margaryan, M.A. Piliavin, Germanate Glasses, Structure, Spectroscopy, and Properties, Artech House, Boston, MA, p. 135 (1993)
    65.Y. H. Tang, Y. F. Zhang, N. Wang, I. Bello, C. S. Lee, and S. T. Lee, Appl. Phys. Lett. 74, 3824 (1999)
    66.J. Q. Hu, Q. Li, X. M. Meng, C. S. Lee, and S. T. Lee, Adv. Mater. 14, 1396 (2002)
    67.Y. J. Zhang, J. Zhu, Q. Zhang, Y. J. Yan, N. L. Wang, X. Z. Zhang, Chem. Phys. Lett. 317, 504 (2000)
    68.Z. Jiang, T. Xie, G. Z. Wang, X. Y. Yuan, C. H. Ye, W. P. Cai, G. W. Meng, G. H. Li, and L. D. Zhang, Mater. Lett. 59, 416 (2005)
    69.P. Viswanathamurthi, N. Bhattarai, H. Y. Kim, M. S. Khil, D. R. Lee, and E. K. Suh, J. Chem. Phys. 121, 441 (2004)
    70.X. C. Wu, W. H. Song, B. Zhao, Y. P. Sun, and J. J. Du, Chem. Phys. Lett. 349, 210 (2001)
    71.P. Hidalgo, B. Mendez, and J. Piqueras, Nanotechnology 16, 2521 (2005)
    72.Y. Maeda, N. Tsukamoto, Y. Yazawa, Y. Kanemitsu, and Y. Masumoto, Appl. Phys. Lett. 59, 3168 (1991)
    73.A. G. Cullis, L. T. Canham, and P. D. J. Calcott, J. Appl. Phys. 82, 909 (1997)
    74.J. R. Heath, F. K. LeGoues, Chem. Phys. Lett. 208, 263 (1993)
    75.T. Hanrath and B. A. Korgel , J. Am. Chem. Soc. 124, 1424 (2002)
    76.D. Wang, Y. L. Chang, Q. Wang, J. Cao, D. B. Farmer, R. G. Gordan, and H. Dai, J. Am. Chem. Soc. 126, 11602 (2004)
    77.J. Q. Hu, X. M. Meng, Y. Jiang, C. S. Lee, and S. T. Lee, Adv. Mater. 15, 70 (2003)
    78.X. M. Meng, J. Q. Hu, Y. Jiang, C. S. Lee, and S. T. Lee, Appl. Phys. Lett. 83, 2241 (2003)
    79.J. Hu, Y. Jiang, X. Meng, C. S. Lee, and S. T. Lee, Small 1, 429 (2005)
    80.Y. F. Zhang, Y. H. Tang, N. Wang, C.S. Lee, I. Bello, and S. T. Lee, Phys. Rev. B 61, 4518 (2000)
    81.G. Gu, M. Burghard, G. T. Kim, G. S. Dusberg, P. W. Chiu, V. Krstic, S. Roth, and W. Q. Han, Appl. Phys. Lett. 90, 5747 (2001)
    82.Y. Wu and P. Yang, Appl. Phys. Lett. 77, 43 (2000)
    83.Y. Huang, J. Lin, J. Zhang, X.X. Ding, S. R. Qi, and C. C. Tang, Nanotechnology 16, 1369 (2005)
    84.T. Guo﹐P. Nikolaev﹐A. Thess﹐D. T. Colbert﹐R. E. Smalley﹐Chem. Phys. Lett. 243, 49 (1995)
    85.D. Wang and H. Dai, Angew. Chem. Int. Ed. 41, 4783 (2002)
    86.H. Adhikari , P. C. Mclntyre, S. Sun, P. Pianetta, C. E. D. Chidsey, Appl. Phys. Lett. 87, 263109 (2005)
    87.H. Adhikari , A. F. Marshall, C. E. D. Chidsey, and P. C. Mclntyre, Nano Lett. 6, 318 (2006)
    88.Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science 291, 1947 (2001)
    89.B. D. Yao, Y. F. Chan, and N. Wang, Appl. Phys. Lett. 81, 757 (2002)
    90.Y. B. Li, T. Bando, D. Golberg, and K. Kurashima, Appl. Phys. Lett. 81, 5048 (2002)
    91.Z. W. Pan, S. Dai, and D. H. Lowndes, Solid State Commun. 134, 251 (2005)
    92.Y. Wu and P. Yang, Chem. Mater. 12, 605 (2000)
    93.Y. Hao, G. Meng, C. Ye, and L. Zhang, Appl. Phys. Lett. 87, 033106 (2005)
    94.G. Gundiah, F. L. Deepak, A. Govindaraj, and C. N. R. Rao, Top. Catal. 24, 137 (2003)
    95.X. C. Wu, J. M. Hong, Z. J. Han, and Y. R. Tao, Chem. Phys. Lett. 373, 28 (2003)
    96.C. Y. Chen, C. I. Lin, and S. H. Chen, Br. Ceram. Trans. 99, 57 (2000)
    97.J. P. Murray, A. Steinfeld, and E. A. Fletcher, Energy 20, 695 (1995)
    98.M. Johnsson, Solid State Ionics 172, 365 (2004)
    99.C. N. R. Rao, G. Gundiah, F. L. Deepak, A. Govindaraj, and A. K. Cheetham, J. Mater. Chem. 14, 440 (2004)
    100.A. Alizadeh, E. T. Nassaj, and N. Ehsani, J. Eur. Ceram. Soc. 24, 3227 (2004)
    101.K. P. Kalyanikutty, G. Gundiah, A. Govindaraj, and C.N. R. Rao, J. Nanosci. Nanotech. 5, 421 (2005)
    102.P. Nguyen, H. T. Ng, and M. Meyyappan, Adv. Mater. 17, 549 (2005)
    103.Y. Ryu, T. Tak, and K. Yong, Nanotechnology 16, S370 (2005)
    104.B. Tian, X. Liu, H. Yang, S. Xie, C. Yu, B. Tu, and D. Zhao, Adv. Mater. 15, 1370 (2003)
    105.T. A. Crowley, K. H. Ziegler, D. M. Lyons, D. Erts, H. Olin, M.A. Morris, and J. D. Holmes, Chem. Mater. 15, 3518 (2003)
    106.Y. Wu, T. Livneh, Y. X. Zhang, G. Cheng, J. Wang, J. Tang, M. Moskovits, and G.D. Stucky, Nano Lett. 4, 2337 (2004)
    107.K. M. Ryan, D. Erts, H. Olin, M. A. Morris, and J. D. Holmes, J. Am. Chem. Soc. 125, 6284 (2003)
    108.N. R. B. Coleman, K. M. Ryan, T. R. Spalding, J. D. Holmes, and M. A. Morris, Chem. Phys. Lett. 343, 1 (2001)
    109.Y. Yin, Y. Lu, Y. Sun, and Y. Xia, Nano Lett. 2, 427 (2002)
    110.B. Gates, Y. Wu, Y. Yin, P. Yang, and Y. Xia, J. Am. Chem. Soc. 123, 11500 (2001)
    111.傅耀賢, “新穎奈米線棒低溫合成技術”, 化工資訊與商情, 第2期 (2003)
    112.C. N. R. Rao, A. Govindaraj, F.L. Deepak, N. A. Gunari, and M. Nath, Appl. Phys. Lett. 78, 1853 (2001)
    113.A. Govindaraj, F.L. Deepak, N.A. Gunari, C. N. R. Rao, Israel J. Chem. 41, 23 (2001)
    114.C. N. R. Rao, F. L. Deepak, G. Gundiah, and A. Govindaraj, Prog. Solid State Chem. 31, 5 (2003)
    115.R. S. Wagner, and W. C. Ellis, Appl. Physl. Lett. 4, 89 (1964)
    116.R. S. Wagner, and W. C. Ellis, Trans. Met. Soc. AIME 233, 1053 (1965)
    117.R. S. Wagner, “Whisker Technology”, Ed. A.P. Levitt, Wiley New York, pp.47-119 (1970)
    118.Y. Wu and P. Yang, J. Am. Chem. Soc. 123, 3165 (2001)
    119.M. Sanjay, S. Hao, S. Vladimir, and W. Ulf, Chem. Mater. 16, 2449 (2004)
    120.Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, J. Am. Chem. Soc. 124, 1817 (2002)
    121.Z. Pan, S. Dai, D. D. Beach, and D. H. Lowndes, Nano Lett. 3, 1279 (2003)
    122.Z. W. Pan, S. Dai, D. B. Beach, D. H. Lowndes, Appl. Phys. Lett. 83, 3159 (2003)
    123.S. Sun, G. Meng, M. Zhang, Y. Hao, X. Zhang, and L. Zhang, J. Phys. Chem. B 107,13029 (2003)
    124.S. T. Lee, N. Wang, Y. F. Zhang, and Y. H. Tang, MRS Bull. 24, 36 (1999)
    125.S. T. Lee, Y. F. Zhang, N. Wang, Y. H. Tang, I. Bello, C. S. Lee, and Y. W. Chung, J. Mater. Res. 14, 4503 (1999)
    126.N. Wang, Y. H. Tang, Y. F. Zhang, C. S .Lee, and S. T. Lee, Phys. Rev. B 58, R16024 (1998)
    127.T. S. Chu, R. Q. Zhang, and H. F. Cheung, J. Phys. Chem. B 105, 1705 (2001)
    128.R. Q. Zhang, Y. Lifshitz, and S. T. Lee, Adv. Mater. 15, 635 (2003)
    129.W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, Chem. Phys. Lett. 345, 377 (2001)
    130.H. Y. Peng, X. T. Zhou, N. Wang, Y. F. Zheng, L. S. Liao, W. S. Shi, C. S. Lee, and S. T. Lee, Chem. Phys. Lett. 27, 263 (2000)
    131.W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, Adv. Mater. 13, 591 (2001)
    132.W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, Appl. Phys. Lett. 78, 3304 (2001)
    133.W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, J. Vac. Sci. Technol. B 19, 1115 (2001)
    134.J. Q. Hu, X. L. Ma, Z. Y. Xie, N. B. Wong, C. S. Lee, and S. T. Lee, Chem. Phys. Lett. 344, 97 (2001)
    135.Y. H. Tang, N. Wang, Y. F. Zhang, C. S. Lee, I. Bello, and S. T. Lee, Appl. Phys. Lett. 75, 2921 (1999)
    136.L. Dai, X. L. Chen, T. Zhou, and B. Q. Hu, J. Phys.: Condens. Matter 14, L473 (2002)
    137.L. Dai, X. L. Chen, J. K. Jian, W. J. Wang, T. Zhou, and B. Q. Hu, Appl. Phys. A 76, 625 (2003)
    138.T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, and W. E. Buhro, Science 270, 1791 (1995)
    139.X. Lu, D. D. Fanfair, K. P. Johnston, and B. A. Korgel, J. Am. Chem. Soc. 127, 15718 (2005)
    140.X. Lu, T. Hanrath, K. P. Johnston, and A. B. Korgel, Nano Lett. 3, 93 (2003)
    141.E. I. Givargizov, J. Crystal Growth 20, 217 (1973)
    142.H. Kohno, and S. Takeda, Appl. Phys. Lett. 73, 3144 (1998)
    143.H. Kohno, S. Takeda, and K. Tanaka, J. Electron. Microscopy 49, 275 (2000)
    144.H. Kohno, S. Takeda, J. Crystal Growth 216, 185 (2000)
    145.H. Kohno, T. Iwasaki, Y. Mita, M. Kobayashi, S. Endo, and S. Takeda, Physica B 308-310, 1097 (2001)
    146.N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, and S. T. Lee, Phys. Rev. B 58, R16024 (1998)
    147.H. Y. Peng, N. Wang, W. S. Shi, Y. F. Zhang, C. S. Lee, and S. T. Lee, J. Appl. Phys. 89, 727 (2001)
    148.H. Y. Peng, Z. W. Pan, L. Xu, X. H. Fan, N. Wang, C. S. Lee, and S. T. Lee, Adv. Mater. 13, 317 (2001)
    149.汪建民等人, “材料分析”, 中國材料科學學會 (1998)
    150.郭正次.朝春光編著, “奈米結構材料科學”, 全華科技, 93年4月, Chap.5.
    151.K. Suenaga, C. Colliex, N. Demoncy, A. Loiseau, H. Pascard, and F. Willaime, Science 278, 653 (1997)
    152.Y. Zhang, K. Suenaga, C. Colliex, and S. Iijima, Science 281, 973 (1998)
    153.Q. Li, and C. Wang, Appl. Phys. Lett. 82, 1398 (2003)
    154.Y. C. Zhu, Y. Bando, D. F. Xue, and D. Golberg, J. Am. Chem. Soc. 125, 16196 (2003)
    155.J. Zhan, Y. Bando, J. Hu, Y. Li, and D. Golberg, Chem. Mater. 16, 5158 (2004)
    156.H. Zhang, X. Luo, J. Xu, B. Xiang, and D. Yu, J. Phys. Chem. B 108, 14866 (2004)
    157.L. Dai, X. L. Chen, X. Zhang, T. Zhou, B. Hu, Appl. Phys. A 78, 557 (2004)
    158.J. C. Yu, X. Hu, Q. Li, and L. Zhang, Chem. Commun. pp.2704 (2005)
    159.T. A. Crowley, B. Daly, M. A. Morris, D. Erts, O. Kazakova, J. J. Boland, B. Wu, and J. D. Holmes, J. Mater. Chem. 15, 2408 (2005)
    160.K. Mori, K. Shoda, and H. Kohno, Appl. Phys. Lett. 87, 083111 (2005)
    161.C. X. Xu, X. W. Sun, Z. L. Dong, and M. B. Yu, Appl. Phys. Lett. 85, 3878 (2004)
    162.D. C. Paine, C. Caragianis, and Y. Shigesato, Appl. Phys. Lett. 60, 2886 (1992)
    163.D. C. Paine, C. Caragianis, T. Y. Kim, and Y. Shigesato, Appl. Phys. Lett. 62, 2842 (1993)
    164.W. S. Liu, J. S. Chen, M. A. Nicolet, V. Arbet-Engels, and K. L. Wang, Appl. Phys. Lett. 62, 3321 (1993)
    165.D. C. Paine, C. Caragianis, and A. F. Schwartzman, J. Appl. Phys. 70, 5076 (1991)
    166.M. Zacharias, R. Weigand, B. Dietrich, F. Stolze, J. Blasing, P. Veit, T. Drusedau, and J. Christen, J. Appl. Phys. 81, 2384 (1997)
    167.L. Liu, T. J. Zhang, K. Cui, and Y. D. Dong, J. Mater. Res. 14, 4062 (1999)
    168.P. Carter, B. Gleeson, and D.J. Young, J. Oxid. Met. 56, 375 (2001)
    169.M. Fujii, S. Hayashi, and K. Yamamoto, Jpn. J. Appl. Phys., Part 1 30, 687 (1991)
    170.M. Zacharis, R. Weigand, B. Dietrich, F. Stolze, J. Blasing, P. Veit, T. Drusedau, and J. Christen, J. Appl. Phys. 81, 2384 (1997)
    171.B. E. Deal and A. S. Grove, J. Appl. Phys. 36, 3770 (1965)
    172.T. B. Massalski, J. L. Murray, L. H. Bennett, and H. Baker, “Binary Alloy Phase Diagrams”, (American Society for Metals, Metals Park, OH) 1, 919 (1986)
    173.T. B. Massalski, J. L. Murray, L. H. Bennett, and H. Baker, “Binary Alloy Phase Diagrams”, (American Society for Metals, Metals Park, OH) 1, 960 (1986)
    174.M. Zheng, L. Zhang, X. Zhang, J. Zhang, and G. Li, Chem. Phys. Lett. 334, 298 (2001)
    175.D. C. Bell, Y. Wu, C. J. Barrelet, S. Gradecak, J. Xiang, B. P. Timko, and C. M. Lieber, Microsc. Res. Tech. 64, 373 (2004)

    下載圖示 校內:2007-07-18公開
    校外:2007-07-18公開
    QR CODE