| 研究生: |
朱贊宇 Chu, Chan-Yu |
|---|---|
| 論文名稱: |
聲化學反應器中非均勻汽泡對聲場之影響 Effects of inhomogeneous bubbles on sound field distribution in sonochemical reactors |
| 指導教授: |
王逸君
Wang, Yi-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 空蝕 、非均質汽泡 、有限元素法 、聲場 、聲化學反應器 、最佳化 |
| 外文關鍵詞: | cavitation, inhomogeneous bubbles, sound field, sonochemical reactor, optimize |
| 相關次數: | 點閱:92 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
液體中存在數量及尺寸不等之微小汽泡核,當液體壓力小於閾值時,汽泡核的體積隨壓力之減少而增加,汽泡內之壓力則快速降低。在液體壓力回升後,汽泡內外之壓力差導致汽泡崩裂,崩裂時汽泡內部產生極高的溫度和壓力,稱為空蝕現象。在工程上會遇到許多空蝕相關的問題,包含聲化學反應器、船隻螺旋槳在水中產生的汽泡對槳面造成侵蝕,以及利用空蝕效應對材料進行表面處理等等,因此準確預測空蝕汽泡的生成是很重要的。就聲化學反應器之分析與設計而言,反應器中的聲場模擬通常忽略汽泡的影響或假設單一汽泡尺寸,本研究探討尺寸非均勻分布的汽泡對聲場之影響,以期建立更為準確的聲場分析模型,有效提升聲化學反應器的效率。本研究使用有限元素分析模型模擬聲波穿過流體時汽泡對聲場分布的影響。首先計算操作頻率下的壓力閾值,再根據此閾值模擬無汽泡、單一汽泡尺寸以及非均質汽泡尺寸下的聲場分布並加以比較。聲場分布經過計算能求得空泡比的分布。接著利用基因演算法設計聲化學反應器之最佳化尺寸,以提升聲化學反應器之聲化學效率,最後以實驗驗證之。
If the pressure amplitude is less than a threshold in liquid, the bubble nuclei volume will expand rapidly. When subjected higher pressure, the bubbles collapse and generate high pressure, high temperature and shock wave. This phenomenon is called “Cavitation”. “Sonochemistry” is applying ultrasound to form cavitation, and the extreme environment caused by cavitation can enhance or initiate chemical activities in solution. Sonochemistry is relevant to cavitation, so we design sonochemical reactors to form intense cavitation field. Present researches commonly ignore the damping effect of bubbles when design sonochemical reactors, therefore, we introduce the inhomogeneous bubbles model to compute the sound field in sonochemical reactors. At first, calculate the pressure threshold (Blake threshold) and employ the COMSOL to compute sound field. Then, the genetic algorithm is employed to optimize the sonochemical reactor size, in order to generate better sonochemical efficiency. Finally, conduct experiments to confirm the accuracy of the computational model.
[1] W. T. Richards and A. L. Loomis, "The chemical effects of high frequency sound waves I. A preliminary survey," Journal of the American Chemical Society, vol. 49, pp. 3086-3100, 1927.
[2] P. R. Birkin, J. F. Power, A. M. Vinçotte, and T. G. Leighton, "A 1 kHz resolution frequency study of a variety of sonochemical processes," Physical Chemistry Chemical Physics, vol. 5, pp. 4170-4174, 2003.
[3] P. R. Gogate, S. Mujumdar, and A. B. Pandit, "Large‐scale sonochemical reactors for process intensification: design and experimental validation," Journal of chemical Technology and Biotechnology, vol. 78, pp. 685-693, 2003.
[4] J. Klíma, A. Frias-Ferrer, J. González-García, J. Ludvík, V. Saez, and J. Iniesta, "Optimisation of 20kHz sonoreactor geometry on the basis of numerical simulation of local ultrasonic intensity and qualitative comparison with experimental results," Ultrasonics sonochemistry, vol. 14, pp. 19-28, 2007.
[5] 姚明宗, "共振式聲化學反應器之 分析與實驗," 成功大學機械工程學系學位論文, pp. 1-88, 2009.
[6] K. W. Commander and A. Prosperetti, "Linear pressure waves in bubbly liquids: Comparison between theory and experiments," The Journal of the Acoustical Society of America, vol. 85, pp. 732-746, 1989.
[7] T. Leighton, "Bubble population phenomena in acoustic cavitation," Ultrasonics Sonochemistry, vol. 2, pp. S123-S136, 1995.
[8] I. Tudela, V. Sáez, M. D. Esclapez, M. I. Díez-García, P. Bonete, and J. González-García, "Simulation of the spatial distribution of the acoustic pressure in sonochemical reactors with numerical methods: a review," Ultrasonics sonochemistry, vol. 21, pp. 909-919, 2014.
[9] R. Jamshidi, B. Pohl, U. A. Peuker, and G. Brenner, "Numerical investigation of sonochemical reactors considering the effect of inhomogeneous bubble clouds on ultrasonic wave propagation," Chemical Engineering Journal, vol. 189, pp. 364-375, 2012.
[10] 葉勵勇, "單頻及雙頻聲化學反應槽之最佳化設計與實驗," 成功大學機械工程學系學位論文, pp. 1-77, 2015.
[11] L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, "Fundamentals of acoustics," Fundamentals of Acoustics, 4th Edition, by Lawrence E. Kinsler, Austin R. Frey, Alan B. Coppens, James V. Sanders, pp. 560. ISBN 0-471-84789-5. Wiley-VCH, December 1999., p. 560, 1999.
[12] T. Leighton, The acoustic bubble: Academic press, 2012.
[13] R. E. Apfel, "Acoustic cavitation," Methods in Experimental Physics, vol. 19, pp. 355-413, 1981.
[14] H. Flynn and C. C. Church, "Transient pulsations of small gas bubbles in water," The Journal of the Acoustical Society of America, vol. 84, pp. 985-998, 1988.
[15] P. R. Gogate, I. Z. Shirgaonkar, M. Sivakumar, P. Senthilkumar, N. P. Vichare, and A. B. Pandit, "Cavitation reactors: efficiency assessment using a model reaction," AIChE Journal, vol. 47, pp. 2526-2538, 2001.
[16] P. R. Gogate and A. B. Pandit, "Sonochemical reactors: scale up aspects," Ultrasonics Sonochemistry, vol. 11, pp. 105-117, 2004.
[17] K. Morison and C. Hutchinson, "Limitations of the Weissler reaction as a model reaction for measuring the efficiency of hydrodynamic cavitation," Ultrasonics sonochemistry, vol. 16, pp. 176-183, 2009.
[18] Y.-C. Wang, "Effects of nuclei size distribution on the dynamics of a spherical cloud of cavitation bubbles," Journal of fluids engineering, vol. 121, pp. 881-886, 1999.
[19] S. Dahnke and F. Keil, "Modeling of linear pressure fields in sonochemical reactors considering an inhomogeneous density distribution of cavitation bubbles," Chemical Engineering Science, vol. 54, pp. 2865-2872, 1999.
[20] V. Raman, A. Abbas, and S. C. Joshi, "Mapping local cavitation events in high intensity ultrasound fields," in Excerpt from the Proceeding of the COMSOL Users Conference, Bangalore, 2006, pp. 1-6.
[21] C. K. Holland and R. E. Apfel, "An improved theory for the prediction of microcavitation thresholds," Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on, vol. 36, pp. 204-208, 1989.