簡易檢索 / 詳目顯示

研究生: 彭德岡
Peng, De-Gang
論文名稱: 適用於空間調變單載波區塊傳輸系統之訊號偵測演算法
Signal Detection Algorithms for Spatial Modulation Aided Single-Carrier Block Transmission
指導教授: 賴癸江
Lai, Kuei-Chiang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 47
中文關鍵詞: 空間調變單載波區塊傳輸系統樹狀搜尋演算法時域等化頻域等化
外文關鍵詞: spatial modulation, single-carrier block transmission system, tree search algorithm, time domain equalization, frequency domain equalization
相關次數: 點閱:255下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多輸入多輸出系統被視為下一代行動通訊的核心技術,有著大幅提升資料傳輸速率,以及有效地對抗多路徑衰減通道的特性。然而,由於多根天線同時傳輸,其代價包含: 嚴重的天線間干擾導致接收端複雜度提高,與使用多射頻鏈造成成本與功耗提高、同步須更嚴謹。空間調變系統之傳送端僅需使用一射頻鏈,因此可有效避免天線間干擾。本論文探討單載波區塊傳輸空間調變系統之樹狀搜尋偵測演算法。文獻中的樹狀搜尋演算法使用M-演算法,在星座點數較大或區塊長度增加之情況下,需要保留較大的分枝數,以達到可接受的效能。為了改善此問題,我們提出了結合前置濾波之樹狀搜尋演算法,以改善等效通道與雜訊之相對影響。我們首先根據最小平方誤差準則設計時域前置濾波器,但此做法所付出的複雜度過高;為了降低複雜度,我們進一步設計頻域前置濾波器。模擬結果顯示:與傳統的樹狀搜尋演算法相比,我們提出之頻域前置濾波之樹狀搜尋演算法,在天線數較少的空間調變系統下,能以較低的複雜度達到傳統樹狀搜尋演算法的效能。

    Multiple-input multiple-output systems are regarded as the core technology of next-generation mobile communication systems; they achieve greatly improved transmission data rates, and are effective against multipath fading channels. However, the prices paid include increased receiver complexity due to inter-antenna interference arising from simultaneously activating multiple transmit antennas, more stringent requirements on synchronization, and greater cost and power consumption due to the use of multiple RF chains. In contrast, spatial modulation systems use only a single RF chain at the transmitter, and effectively avoid inter-antenna interference. In this thesis, we focus on tree-search based detection algorithms for spatial modulation aided single-carrier block transmission systems. The conventional tree-search detection algorithm uses the M-algorithm; it needs to retain a large number of branches to achieve an acceptable performance when the constellation size and/or the block length increase. To tackle this issue, we combine pre-filtering with the tree-search detector in order to condition the equivalent channel experienced by the detector. We first design the time-domain pre-filter based on the minimum mean square error criterion. However, the resulting complexity is significantly high. In order to reduce the complexity, we design the frequency-domain pre-filter. Simulation results show that, compared with the conventional tree-search algorithm, the proposed frequency-domain pre-filter achieves a similar performance with a lower complexity in spatial modulation systems of a small size.

    目錄 中文摘要 I Extended Abstract II 目錄 V 表目錄 VII 圖目錄 VIII 第一章 導論 1 1.1前言 1 1.2研究動機 1 1.3論文章節提要 2 第二章 單載波區塊傳輸空間調變系統 3 2.1 多输入多输出通道模型 3 2.2 系統模型 4 第三章 單載波區塊傳輸系統之偵測器 11 3.1 單輸入單輸出系統之單載波區塊傳輸樹狀搜尋演算法 11 3.1.1系統模型 11 3.1.2最大概似偵測器 12 3.1.3運用在單載波區塊傳輸之樹狀搜尋演算法[10][11] 13 3.2 應用在單載波區塊傳輸空間調變系統之偵測器 20 3.2.1 線性等化器[7] 20 3.2.2 M-演算法[12] 24 第四章 提出之演算法 27 4.1 動機 27 4.2 MMSE-DFE準則前置濾波器 27 4.2.1 時域前置濾波器(假設非循環矩陣) 28 4.2.2 頻域前置濾波器(循環矩陣) 33 4.3 複雜度 38 第五章 模擬結果 39 5.1 系統及通道模擬參數 39 5.2 模擬結果與分析 40 5.2.1 模擬結果 40 5.2.2 系統複雜度 43 第六章 結論與未來研究方向 46 參考文獻 47

    [1] T. Yamamoto, K. Takeda, and F. Adachi, “Training Sequence-aided Single-carrier Block Signal Detection Using QRM-MLD,” IEEE Wireless Communications & Network Conference 2010, Apr. 2010.
    [2] T. Yamamoto, K. Takeda, and F. Adachi, “Frequency-Domain Block Signal Detection with QRM-MLD for Training Sequence-Aided Single-Carrier Transmission,” EURASIP Journal on Advances in Signal Processing, Volume 2011.
    [3] F. Adachi, H. Tomeba, and K. Takeda, and S. Members, ” introduction of frequency-domain signal processing to broadband single-carrier transmissions in a wireless channel,”IEICE Trans. Commun., vol. E92B, no. 9, pp. 2789-2808, Sept. 2009.
    [4] M. D. Renzo et al., “spatial modulation for generalized mimo challenges opportunities and implementation,” Proc. IEEE, vol. 102, no. 1, jan. 2014, pp. 56-103.
    [5] R. Mesleh, H. Haas, C. W. Ahn, and S. Yun, “Spatial modulation–a new low complexity spectral efficiency enhancing technique,” in Proc. Conf. Comm. and Networking in China, Oct. 2006.
    [6] R. Mesleh, H. Haas, S. Sinanovi´, C. W. Ahn, and S. Yun, “Spatial modulation,” IEEE Trans. Veh. Technol., vol. 57, no. 4, pp. 2228-2241, July 2008.
    [7] Sugiura and L. Hanzo, ‘‘Single-RF spatial modulation requires single- carrier transmission: Frequency-domain turbo equalization for dispersive channels,” IEEE Trans. Veh. Technol., vol. 64, no. 10, pp. 4870-4875, Oct. 2015
    [8] P. Som and A. Chockalingam, “Spatial modulation and space shift keying in single carrier communication,” Proc. IEEE PIMRC’2012, pp.1991-1996, Sep. 2012
    [9] R. Rajashekar, K. V. S. Hari, and L. Hanzo, “Spatial modulation aided zero-padded single carrier transmission for dispersive channels,” IEEE Trans. Commun., vol.61,
    no. 6, pp.2318-2329, Jun. 2013.
    [10] Shih-Jung Wang, ”Signal Detection for Single-Carrier Block Transmission Systems using Tree Search Algorithm,” Institute of Computer and Communication Engineering National Cheng Kung University Thesis for Master of Science, July 2011.
    [11] Chih-Heng Tsai,” An Equalizer for Single-Carrier Block Transmission System Using Frequency-Domain Preprocessing Combined with Tree Search” Institute of Computer and Communication Engineering National Cheng Kung University Thesis for Master of Science, July 2013
    [12] Y. Xiao, Z. Yang, L. Dan, P. Yang, L. Yin, and W. Xiang, “Low-complexity signal detection for generalized spatial modulation,” IEEE Commun. Lett., vol. 18, no. 3, pp. 403–406, Mar. 2014.

    無法下載圖示 校內:2022-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE