| 研究生: |
鍾誠錚 Chung, Chen-Cheng |
|---|---|
| 論文名稱: |
不同外徑/壁厚比圓孔管之循環彎曲響應和失效 Cyclic Bending Response and Failure of Round-Hole Tubes with Different Diameter-to-Thickness Ratios |
| 指導教授: |
潘文峰
Pan, Wen-Fung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | ANSYS 、有限元素法 、循環負載 |
| 外文關鍵詞: | ANSYS, Finite Element Method, Cyclic bending |
| 相關次數: | 點閱:54 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文提出了不同直徑與厚度比為16.5、31.0和60.0,不同孔徑為2、4、6、8和10 mm的6061-T6鋁合金圓孔管的響應和失效實驗結果表明,彎矩與曲率的關係從第一個週期開始就呈現出穩定的循環。由於孔較小且局部,因此孔直徑對彎矩-曲率關係的影響最小。但是,隨著循環數的增加,橢圓化與曲率的關係描繪出棘狀不對稱增加和領結狀的趨勢。孔的直徑對兩者之間的關係有很大影響。此外,對6061-T6鋁合金圓孔管進行了三種不同的直徑與厚度比和五個不同的孔直徑的測試,控製曲率與破壞圈數的關係對於每個直徑與厚度的比率,以對數-對數圖顯示失效關係所需的周期顯示為不平行的直線。最後,使用有限元素法軟體ANSYS來模擬彎矩-曲率和橢圓化-曲率的關係,並建立經驗公式將該模擬結果與實驗結果進行比較,發現理論分析可以合理地再現實驗結果。
The thesis presents the response and failure of 6061-T6 aluminum alloy round-hole tubes with different diameter-to-thickness ratios of 16.5, 31.0, and 60.0 and with different hole diameter of 2, 4, 6, 8, and 10 mm subjected to cyclic bending. The experimental results revealed that the moment-curvature relationship exhibited a steady loop from the first cycle. Because the holes were small and local, hole diameters showed minimal influence on the moment-curvature relationship. However, the ovalization–curvature relationship depicted ratcheting, asymmetrical, increasing, and bowtie-like trends as the number of cycles increased. The hole diameter showed substantial influence on the relationship. Furthermore, the 6061-T6 aluminum alloy round-hole tubes were tested with three different diameter-to- thickness ratios and with five different hole diameters, the relationship between the controlled curvature and the number of cycles needed to initiate failure relationships in a log–log scale displayed nonparallel straight lines for each diameter-to-thickness ratio. Finally, the finite element ANSYS was used to simulate the moment-curvature and ovalization–curvature relationships, and an empirical formula was proposed to simulate the relationship between the controlled curvature and number of cycles needed to initiate failure. The simulation result was compared with the experimental results, and it was found that the theoretical analysis could reasonably reproduce the experimental results.
1. Kyriakides, S. and Shaw, P. K., “Response and Stability of Elastoplastic Circular Pipes under Combined Bending and External Pressure,” Int. J. Solids Struct., 18(11), 957-973 (1982).
2. Shaw, P. K. and Kyriakides, S., “Inelastic Analysis of Thin-Walled Tubes under Cyclic Bending,” Int. J. Solids Struct., 21(11), 1073-1110 (1985).
3. Kyriakides, S. and Shaw, P. K., “Inelastic Buckling of Tubes under Cyclic Loads,” J. Pres. Ves. Tech., 109(2), 169-178 (1987).
4. Corona, E. and Kyriakides, S., “On the Collapse of Inelastic Tubes under Combined Bending and Pressure,” Int. J. Solids Struct., 24(5), 505-535 (1991).
5. Corona, E. and Kyriakides, S., “An Experimental Investigation of the Degradation and Buckling of Circular Tubes under Cyclic Bending and External Pressure,” Thin-Walled Struct., 12(3), 229-263 (1991).
6. Kyriakides, S., Ju, G. T. (1992), “Bifurcation and Localization Instabilities in Cylindrical Shells under Bending- I. Experiments,” Int. J. Solids Struct., 29(9), 1117-1142 (1992).
7. Kyriakides, S., Ju, G. T. (1992), “Bifurcation and Localization Instabilities in Cylindrical Shells under Bending- II. Predictions,” Int. J. Solids Struct., 29(9), 1143-1171 (1992).
8. Vaze, S. and Corona, E., “Degradation and Collapse of Square Tubes under Cyclic Bending,” Thin-Walled Struct., 31(4), 325-341 (1998).
9. Corona, E. and Kyriakides, S., “Asymmetric Collapse Modes of Pipes under Combined Bending and Pressure,” Int. J. Solids Struct., 24(5), 505-535 (2000).
10. Corona, E., Lee, L. H. and Kyriakides, S. “Yield Anisotropic Effects on Buckling of Circular Tubes under Bending,” Int. J. Solids Struct., 43(22), 7099-7118 (2006).
11. Kyriakides, S., Ok, A., and Corona, E., “Localization and Propagation of Curvature under Pure Bending in Steel Tubes with Lüders Bands,” Int. J. Solids Struct., 45(10), 3074-3087 (2008).
12. Limam, A., Lee, L. H., Corana, E. and Kyriakides, S., “Inelastic Wrinkling and Collapse of Tubes under Combined Bending and Internal Pressure,” Int. J. Mech. Sci., 52(5), 37-47 (2010).
13. Limam, A., Lee, L. H. and Kyriakides, S., “On the Collapse of Dented Tubes under Combined Bending and Internal Pressure,” Int. J. Solids Struct., 55(1), 1-12 (2012).
14. Bechle, N. J., Kyriakides, S., “Localization of NiTi Tubes under Bending,” Int. J. Solids Struct., 51(5), 967-980 (2014).
15. Jiang, D., Kyriakides, S., Bechle, N. J. and Landis, C. M. “Bending of Pseudoelastic NiTi Tubes,” Int. J. Solids Struct., 124, 192-214 (2017).
16. Kazinakis, K., Kyriakides, S., Jiang, D., Landis, C. M., “Buckling and Collapse of Pseudoelastic NiTi Tubes under Bending,” Int. J. Solids Struct., online (2020).
17. Yuan, W. and Mirmiran, A., “Buckling Analysis of Concrete-Filled FRP Tubes,” Int. J. Struct. Stab. Dyn., 1(3), 367-383 (2001).
18. Elchalakani, M., Zhao, X. L. and Grzebieta, R. H., “Plastic Mechanism Analysis of Circular Tubes under Pure Bending,” Int. J. Mech. Sci., 44(6), 1117-1143 (2002).
19. Jiao, H. and Zhao, X. L., “Section Slenderness Limits of Very High Strength Circular Steel Tubes in Bending,” Thin-Walled Struct., 42(9), 1257-1271 (2004).
20. Corradi, L., Luzzi, L. and Trudi, F., Plasticity-Instability Coupling effects on the Collapse of Thick Tubes,” Int. J. Struct. Stab. Dyn., 5(1), 1-18 (2005).
21. Houliara, S. and Karamanos, S. A., “Buckling and Post-Buckling of Long Pressurized Elastic Thin-Walled Tubes under In-Plane Bending,” Int. J. Nonlinear Mech., 41(4), 491-511 (2006).
22. Elchalakani, M., Zhao, X. L. and Grzebieta, R. H., “Variable Amplitude Cyclic Pure Bending Tests to Determine Fully Ductile Section Slenderness Limits for Cold-Formed CHS,” Eng. Struct., 28(9), 1223-1235 (2006).
23. Mathon, C. and Liman, A., “Experimental Collapse of Thin Cylindrical Shells Submitted to Internal Pressure and Pure Bending,” Thin-Walled Struct., 44(1), 39-50 (2006).
24. Elchalakani, M. and Zhao, X. L., “Concrete-Filled Cold-Formed Circular Steel Tubes Subjected to Variable Amplitude Cyclic Pure Bending,” Eng. Struct., 30(2), 287-299 (2008).
25. Han, S. C., Lomboy, G. R. and Kim, K. D., “Mechanical Vibration and Buckling Analysis of FGM Plates and Shells Using a Four-Node Quasi-Conforming Shell Element,” Int. J. Struct. Stab. Dyn., 8(2), 203-229 (2008).
26. Fatemi, A., Kenny, S., Sen, M., Zhou, J., Tahern, F. and Paulin, M., “Parameters Affecting Buckling and Post-Buckling Behavior of High Strength Pipelines,” Proc. of the 28th Int. Conf. on Ocean, Offshore Mech. and Arctic Eng., Hawaii, U.S.A., OMAE2009-79578 (2009).
27. Suzuki, N., Tajika, H., Igi, S., Okatsu, M., Kondo, J. and Arakawa, T., “Local Buckling Behavior of 48 High-Strain Line Pipes,” Proc. of the 8th Int. Pipeline Conf., Alberta, Canada, ICP2010-31637 (2010).
28. Priyadarsini, R. S., Kalyanaraman, V. and Srinivasan, S. M., “Numerical and Experimental Study of Buckling of Advanced Fiber Composite Cylinders under Axial Compression,” Int. J. Struct. Stab. Dyn., 12(4), 1250028 [25 pages] (2012).
29. Zhi, X. D., Fan, F. and Shen, S. Z., “Failure Mechanism of Single-Layer Cylindrical Reticulated Shells under Earthquake Motion,” Int. J. Struct. Stab. Dyn., 12(2), 233-249 (2012).
30. Yazdani, H. and Nayebi, A., “Continuum Damage Mechanics Analysis of Thin-Walled Tube under Cyclic Bending and Internal Constant Pressure,” Int. J. Appl. Mech., 5(4), 1350038 [20 pages] (2013).
31. Guo, L., Yang, S. and Jiao, H., “Behavior of Thin-Walled Circular Hollow Section Tubes Subjected to Bending,” Thin-Walled Struct., 73, 281-289 (2013).
32. Shariati, M., Kolasangiani, K., Norouzi, G. and Shahnavaz, A., “Experimental Study of SS316L Cantilevered Cylindrical Shells under Cyclic Bending Load,” Thin-Walled Struct., 82, 124-131 (2014).
33. Fan, H. G., Chen, Z. P., Feng, W. Z., Zhou, F. and Cao, G. W., “Dynamic buckling of Cylindrical Shells with Arbitrary Axisymmetric Thickness Vibration under Time Dependent External Pressure,” Int. J. Struct. Stab. Dyn., 15(3), 1450053 [21 pages] (2015).
34. Elchalakani, M., Karrech, A., Hassanein, M. F. and Yang B., “Plastic and Yield Slenderness Limits for Circular Concrete Filled Tubes Subjected to Static Pure Bending,” Thin-Walled Struct., 109, 50-64 (2016).
35. Shamass, R., Alfano, G. and Guarracino, F., “On Elastoplastic Buckling Analysis of Cylinders under Nonproportional Loading by Differential Quadrature Method,” Int. J. Struct. Stab. Dyn., 17(7), 1750072 [40 pages] (2017).
36. Li, P. and Wang, L., “Nonlinear Stability Behavior of Cable-Stiffened Single-Layer Latticed Shells under Earthquakes,” Int. J. Struct. Stab. Dyn., 18, 1850117 [24 pages] (2018).
37. Chegeni, B., Jayasuriya, S. and Das, S., “Effect of Corrosion on Thin-Walled Pipes under Combined Internal Pressure and Bending,” Thin-Walled Struct., 143. 106218 [8 pages] (2019).
38. Pan, W. F., Wang, T. R. and Hsu, C. M., “A Curvature-Ovalization Measurement Apparatus for Circular Tubes under Cyclic Bending,” Exp. Mech., 38(2), 99-102 (1998).
39. Pan, W. F. and Her, Y. S., “Viscoplastic Collapse of Thin-Walled Tubes under Cyclic Bending,” J. Eng. Mat. Tech., 120(4), 287-290 (1998).
40. Lee, K. L., Pan, W. F. and Kuo, J. N., “The Influence of the Diameter-to-Thickness Ratio on the Stability of Circular Tubes under Cyclic Bending,” Int. J. Solids Struct., 38(14), 2401-2413 (2001).
41. Lee, K. L., and Pan, W. F. Pan, “Pure Bending Creep of SUS304 Stainless Steel,” Steel Comp. Struct., 2(6), 261-474 (2002).
42. Pan, W. F. and Lee, K. L., “The Effect of Mean Curvature on the Response and Collapse of Thin-Walled Tubes under Cyclic Bending,” JSME Int. J., Ser. A, 28(2), 495-514 (2002).
43. Chang, K. H., Hsu, C. M., Sheu, S. R. and Pan, W. F., “Viscoplastic Response and Collapse of 316L Stainless Steel under Cyclic Bending,” Steel Comp. Struct., 5(5), 359-374 (2005).
44. Chang, K. H. and Pan, W. F., “Mean Moment Effect on Circular Thin-Walled Tubes under Cyclic Bending,” Struct Eng. Mech., 28(5) 495-514 (2008).
45. Chang, K. H. and Pan, W. F., “Buckling Life Estimation of Circular Tubes under Cyclic Bending,” Int. J. Solids Struct., 46(2), 254-270 (2009).
46. Pan, W. F., Lee, K. L., Hung, C. Y. and Chang H. Y., “Buckling Life Estimation of Circular Tubes of Different Materials under Cyclic Bending,” J. Chi. Ins. Eng., 33(2) 177-189 (2010).
47. Lee, K. L., Hung, C. Y., and Pan, W. F., “Variation of Ovalization for Sharp-Notched Circular Tubes under Cyclic Bending,” J. Mech., 26(3), 403-411 (2010).
48. Lee, K. L., Mechanical Behavior and Buckling Failure of Sharp-Notched Circular Tubes under Cyclic Bending,” Struct. Eng. Mech., 34(3), 367-376 (2010).
49. Lee, K. L., Hsu, C. M. and Pan, W. F., “Viscoplastic Collapse of Sharp-Notched Circular Tubes under Cyclic Bending,” Acta Mech. Solida Sinica, 26(6), 629-641 (2013).
50. Lee, K. L., Hsu, C. M. and Pan, W. F., “Response of Sharp-Notched Circular Tubes under Bending Creep and Relaxation,” Mech. Eng. J., 1(2), 1-14 (2014).
51. Chung, C. C., Lee, K. L. and Pan, W. F., “Collapse of Sharp-Notched 6061-T6 Aluminum Alloy Tubes under Cyclic Bending,” Int. J. Struct. Stab. Dyn., 16(7), 1550035 [24 pages] (2016).
52. Lee, K. L., Chang, K. H. and Pan, W. F., “Failure Life Estimation of Sharp-Notched Circular Tubes with Different Notch Depths under Cyclic Bending,” Struct. Eng. Mech., 60(3), 365-386 (2016).
53. Lee, K. L., Chang, K. H. and Pan, W. F., “Effect of Notch Depth and Direction on Stability of Local Sharp-Notched Circular Tubes Subjected to Cyclic Bending,” Int. J. Struct. Stab. Dyn., 18(7), 1850090 [23 pages] (2018).
54. Lee, K. L., Chung, C. C. and Pan, W. F., “Cyclic Bending Deterioration and Failure of Locally-Dented Circular Tubes,” J. Chi. Soc. Mech. Eng., 39(1), 53-63 (2018).
55. Lee, K. L., Weng, M. L. and Pan, W. F., “On the Failure of Round-Hole Tubes under Cyclic Bending,” J. Chi. Soc. of Mech. Eng., 40(6), 663-673 (2019).
56. Lee, K. L., Chin, L. C. and Pan, W. F., “Elastoplastic Response and Failure of Round-Hole Tubes under Cyclic Bending,” IFORMATICA J., 31(4), 23-41 (2020).