| 研究生: |
蘇育萱 Su, Yu-Hsuan |
|---|---|
| 論文名稱: |
四元銅銦金屬硒化物之合成與光學性質 Synthesis and Optical Properties of Quaternary Copper-Indium Selenide |
| 指導教授: |
許桂芳
Hsu, Kuei-Fang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 金屬硫族化合物 、光致發光 、太陽能光電 |
| 外文關鍵詞: | metal chalcogenide, photoluminescence, photovoltaic |
| 相關次數: | 點閱:65 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用高溫固態反應,合成出新穎結構化合物Ba3.5Cu7.625In1.125Se9 (1)。化合物晶系為 Orthorhombic,空間群為中心對稱 Pnma,單位晶格三軸長為 a = 46.1700(12) Å,b = 4.26710(10) Å,c = 19.8125(5) Å。整體結構由MSe3、MSe4 (M = Cu, In)形成三維結構。結構骨架由四個主要區塊(unit)以Se為共用角連結而成,並形成沿b軸孔道,而Ba2+陽離子及鏈狀InSe4填入孔道中。
此化合物的純相合成是由BaSe、Cu、In、Se以接近分子式比例在高溫成功被合成出來。合成溫度條件: 將反應物在1000°C高溫初步熔融,接著在650°C退火,可完全防止雜相BaCu2Se2生成。化合物的熔點由差示熱分析儀鑑定為750°C,再結晶點為726°C。化合物直接能隙為1.24 eV,透過紫外光-可見-近紅外光光譜儀並利用Kubelka-Munk function與Tauc plot光譜分析所得。此化合物獨特的地方是在660 nm附近有紅光訊號,利用微光激發光譜儀使用激發波長532 nm,強度1 mW的雷射照射化合物晶體及粉末偵測出兩者放光訊號位置一致。化合物為P型半導體,由霍爾效應分析得知其載子濃度為4.95×1018 cm-3,遷移速率為11.4 cm2/v-s。此化合物在太陽能應用上具有潛力。此外,我們將化合物分成不同粒徑大小,目前正在進行三倍頻光學量測。
A new quaternary copper indium chalcogenide of Ba3.5Cu7.625In1.125Se9 has been synthesized by solid-state reaction at 1000 oC. The structure adopts a centrosymmetric space group Pnma. Crystal data: Ba3.5Cu7.625In1.125Se9, 1, a = 46.1700(12) Å, b = 4.26710(10) Å, c = 19.8125(5) Å, V= 3903.30 Å3, Z=1. The compound adopts a new three-dimensional framework, which is constructed by CuSe4 tetrahedra, InSe4 tetrahedra and CuSe3 trigonal. Several metal sites in the framework are disordered and refined with Cu/In atoms. This copper indium selenide displays the photoluminescence (PL) with a broad and strong signal centered at 660nm. UV-visable-near-infrared absorption spectrum analyzed by the Kubelka-Munk equation and Tauc plot shows the compound featuring direct band gap of 1.24 eV. The temperature-dependent powder X-ray diffraction patterns showed the compound belongs to a thermal stable phase. Therefore, this compound features the potential in solar cell.
[1] Isaenko, L.; Krinitsin, P.; Vedenyapin, V.; Yelisseyev, A.; Merkulov, A.; Zondy, J. J.; Petrov, V., Cryst. Growth Des. 2005, 5, 1325-1329.
[2] Yao, J.; Mei, D.; Bai, L.; Lin, Z.; Yin, W.; Fu, P.; Wu, Y., Inorg. Chem. 2010, 49, 9212-9216.
[3] Wu, K.; Zhang, B.; Yang, Z.; Pan, S., J. Am. Chem. Soc. 2017, 139, 14885-14888.
[4] Kildal, H.; Mikkelsen, J. C., Opt. Commun. 1973, 9, 315-318.
[5] Kaplan, L.; Leitus, G.; Lyakhovitskaya, V.; Frolow, F.; Hallak, H.; Kvick, Å.; Cahen, D., Synchrotron X-ray Diffraction Evidence for Native Defects in the Photovoltaic Semiconductor CuInSe2. Advanced Materials 2000, 12 (5), 366-370.
[6] Torimoto, T.; Kameyama, T.; Kuwabata, S., J. Phys. Chem. Lett. 2014, 5, 336-347.
[7] Wagner, S.; Shay, J. L.; Migliorato, P.; Kasper, H. M., Appl. Phys. Lett. 1974, 25, 434-435.
[8] Fearheiley, M. L., Sol. Cells 1986, 16, 91-100.
[9] Zhang, S. B.; Wei, S.-H.; Zunger, A.; Katayama-Yoshida, H., Phys. Rev. B 1998, 57, 9642-9656.
[10] Guillemoles, J.-F.; Rau, U.; Kronik, L.; Schock, H.-W.; Cahen, D., Adv. Mater. 1999, 11, 957-961.
[11] Contreras, M. A.; Ramanathan, K.; AbuShama, J.; Hasoon, F.; Young, D. L.; Egaas, B.; Noufi, R., Prog. Photovolt. Res. Appl. 2005, 13, 209-216.
[12] Paire, M.; Jean, C.; Lombez, L.; Collin, S.; Pelouard, J.-L.; Gérard, I.; Guillemoles, J.-F.; Lincot, D., Thin Solid Films 2015, 582, 258-262.
[13] Jackson, P.; Wuerz, R.; Hariskos, D.; Lotter, E.; Witte, W.; Powalla, M., Phys. Status Solidi Rapid Res. Lett. 2016, 10, 583-586.
[14] Kemell, M.; Ritala, M.; Leskelä, M., Crit. Rev. Solid State Mater. Sci. 2005, 30, 1-31.
[15] Wang, W.; Winkler, M. T.; Gunawan, O.; Gokmen, T.; Todorov, T. K.; Zhu, Y.; Mitzi, D. B., Adv. Energy Mater. 2014, 4, 1301465.
[16] Shin, D.; Saparov, B.; Zhu, T.; Huhn, W. P.; Blum, V.; Mitzi, D. B., Chem. Mater. 2016, 28, 4771-4780.
[17] Walsh, A.; Chen, S.; Wei, S.-H.; Gong, X.-G., Adv. Energy Mater. 2012, 2, 400-409.
[18] Chen, S.; Gong, X. G.; Walsh, A.; Wei, S.-H., Appl. Phys. Lett. 2010, 96, 021902.
[19] Han, D.; Sun, Y. Y.; Bang, J.; Zhang, Y. Y.; Sun, H.-B.; Li, X.-B.; Zhang, S. B., Phys. Rev. B 2013, 87, 155206.
[20] Romero, M. J.; Du, H.; Teeter, G.; Yan, Y.; Al-Jassim, M. M., Phys. Rev. B 2011, 84, 165324.
[21] Hong, F.; Lin, W.; Meng, W.; Yan, Y., Phys. Chem. Chem. Phys. 2016, 18, 4828-4834.
[22] Taguchi, M.; Yano, A.; Tohoda, S.; Matsuyama, K.; Nakamura, Y.; Nishiwaki, T.; Fujita, K.; Maruyama, E., IEEE J. Photovolt. 2014, 4, 96-99.
[23] Lee, S.-M.; Kwong, A.; Jung, D.; Faucher, J.; Biswas, R.; Shen, L.; Kang, D.; Lee, M. L.; Yoon, J., ACS Nano 2015, 9, 10356-10365.
[24] Rühle, S., Sol. Energy 2016, 130, 139-147.
[25] Marzo, A.; Ferrada, P.; Beiza, F.; Alonso-Montesinos, J.; Ballestrín, J.; Roman, R., Sol. Energy Appl. 2016.
[26] Zhang, H. L.; Van Gerven, T.; Baeyens, J.; Degr; Sci. World J. 2014, 2014, 10.
[27] Pan, A.; Yang, H.; Liu, R.; Yu, R.; Zou, B.; Wang, Z., J. Am. Chem. Soc. 2005, 127, 15692-15693.
[28] Shirakata, S., Phys. Status Solidi (b) 2015, 252, 1211-1218.
[29] Shirakata, S.; Yudate, S.; Honda, J.; Iwado, N., Jpn. J. Appl. Phys. 2011, 50, 05FC02.
[30] Kuo, S.-M.; Chang, Y.-M.; Chung, I.; Jang, J.-I.; Her, B.-H.; Yang, S.-H.; Ketterson, J. B.; Kanatzidis, M. G.; Hsu, K.-F., Chem. Mater. 2013, 25, 2427-2433.
[31] Lai, W.-H.; Haynes, A. S.; Frazer, L.; Chang, Y.-M.; Liu, T.-K.; Lin, J.-F.; Liang, I. C.; Sheu, H.-S.; Ketterson, J. B.; Kanatzidis, M. G.; Hsu, K.-F., Chem. Mater. 2015, 27, 1316-1326.
[32] Haynes, A. S.; Saouma, F. O.; Otieno, C. O.; Clark, D. J.; Shoemaker, D. P.; Jang, J. I.; Kanatzidis, M. G., Chem. Mater. 2015, 27, 1837-1846.
[33] Haynes, A. S.; Banerjee, A.; Saouma, F. O.; Otieno, C. O.; Jang, J. I.; Kanatzidis, M. G., Chem. Mater. 2016, 28, 2374-2383.
[34] Kobayashi, H.; Kanbara, H.; Koga, M.; Kubodera, K. i., J. Appl. Phys. 1993, 74, 3683-3687.
[35] Burdett, J. K.; Eisenstein, O., Inorg. Chem. 1992, 31, 1758-1762.
[36] Brimmer, P. J.; Griffiths, P. R., Appl. Spectrosc. 1988, 42, 242-247.
[37] Guillemoles, J.-F.; Kronik, L.; Cahen, D.; Rau, U.; Jasenek, A.; Schock, H.-W., J. Phys. Chem. B 2000, 104, 4849-4862.
[38] Dimmler, B.; Schock, H. W., Prog. Photovolt. Res. Appl. 1996, 4, 425-433.
[39] Biswal, N.; Das, D. P.; Martha, S.; Parida, K. M., Int. J. Hydrog. Energy 2011, 36, 13452-13460.
[40] Fan, W.; Lai, Q.; Zhang, Q.; Wang, Y., J. Phys. Chem. C 2011, 115, 10694-10701.
[41] Patel, M.; Chavda, A.; Mukhopadhyay, I.; Kim, J.; Ray, A., Nanoscale 2016, 8, 2293-2303.
[42] Gokmen, T.; Gunawan, O.; Todorov, T. K.; Mitzi, D. B., Appl. Phys. Lett. 2013, 103, 103506.
[43] Hsu, Y.-T.; Huang, K.-F.; Tsai, S.-I.; Lan, W.-H.; Yueh, M.; Lin, J.-C.; Chang, K.-J.; Lin, W.-J., SPIE 2012, 8470.