簡易檢索 / 詳目顯示

研究生: 劉思呈
Liu, Sai-Chang
論文名稱: 一維氧化鋅奈米結構之成長與特性分析
Growth and characterization of one-dimensional ZnO nanostructures
指導教授: 吳季珍
Wu, Jih-Jen
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 193
中文關鍵詞: 氧化鋅奈米結構稀磁性半導體
外文關鍵詞: ZnO, nanostructures, DMSs
相關次數: 點閱:53下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    本論文主要分為兩大研究主題,第一個主題為以化學氣相沈積(CVD)法低溫成長一維氧化鋅奈米結構。第二個部份是以化學氣相沈積法成長一維鐵磁性Zn1-xCoxO奈米柱。

    第一部份:
    本研究採用Zn(C5H7O2)2為先驅物,以化學氣相沈積法,在500oC爐管中於fused-silica、Si(100)、sapphire 與sapphire(0001)基板上成長氧化鋅奈米柱。經掃描式電子顯微鏡(SEM)觀察下可發現,除了sapphire(0001)基板外,皆呈現出高密度與高方向性的奈米柱。粉末繞射(XRD)分析得知氧化鋅奈米柱為wurtzite結構,且具有沿著結晶c軸成長的優勢。穿透式電子顯微鏡(TEM)分析得知氧化鋅奈米柱與sapphire(110)基板為磊晶成長,且磊晶關係為ZnO[0001]//sapphire[110]與ZnO[110]// sapphire[0001]。而成長在Si(100)基板的奈米柱則有一層約3nm厚的SiOx層。光激發光譜(Photoluminescence,PL)中發現於3.2eV處有一個強的紫外光放射峰。由光激發光譜光譜與拉曼光譜分析得知氧化鋅奈米柱中氧空缺濃度很低。 此外由氧化鋅奈米柱的angle-dependent X光吸收光譜(x-ray absorption spectroscopy, XAS)與掃描式光電子顯微能譜(scanning photoelectron microscopy, SPEM)分析,可得知奈米柱的尖端最表面應為氧離子,且奈米柱之成長方向為[000-1 ]。
    本研究亦藉由將Zn(C5H7O2)2熱裂解的方式成長出一維Zn-ZnO同軸奈米電纜與氧化鋅奈米管。經穿透式電子顯微鏡觀察發現核心部位的鋅與氧化鋅外批覆層具有磊晶關係,且成長方向皆為(0001)。而氧化鋅奈米管的厚度約為4nm,為單晶,屬於Zn-ZnO同軸異質結構中外層的延伸。推測其成長機制為經由高溫將Zn-ZnO同軸異質結構中之鋅元素揮發而形成氧化鋅奈米管。

    第二部份:
    本實驗以熱化學氣相沈積(thermal CVD)的方法將鈷元素掺入所成長的氧化鋅奈米柱中形成稀釋型磁性半導體,且居禮溫度可高於350K。經結構分析發現所成長的Zn1-xCoxO奈米柱為單晶之wurtzite結構,並無其它相析出。經紫外-可見光(uv-vis)吸收光譜分析得知該Zn1-xCoxO與氧化鋅奈米柱相似,於可見光下呈現透明。由Zn1-xCoxO奈米柱之延伸X光吸收精細結構(EXAFS)分析發現並無氧化鈷(CoO)與鈷結晶相析出,顯示於Zn1-xCoxO奈米柱中鈷原子有系統的取代了鋅原子的位置。

    Abstract
    Two main research subjects are presented in this thesis. Part I is “Low temperature growth of ZnO nanostructures by chemical vapor deposition”. Part II is “Growth of well-aligned ferromagnetic Zn1-xCoxO nanorods by thermal CVD”.

    Part I.
    Highly oriented ZnO nanorods have been grown on various substrates, such as fused silica, Si(100), sapphire(110), and sapphire(0001) using a simple catalyst-free CVD method at 500oC in furnace. SEM images indicat that high density and well-aligned ZnO nanorods were grown on fused silica, Si(100) and sapphire(110). XRD diffraction shows that the ZnO nanorods are wurtzite structure and are preferentially oriented in c-axis. TEM analyses indicate that epitaxial ZnO nanorods have been grown on sapphire(110) with the ZnO/sapphire orientational relationship[0001]//[110] and [110]//[0001]. In the case of the Si(100) substrate, an amorphous SiOx interfacial layer exists between ZnO nanorods and Si(100). The well-aligned ZnO nanorods on fused silica substrates exhibit a strong UV emission and absorption at around 386 nm under room temperature. Photoluminescence and Raman spectra indicate that there is a very low concentration of oxygen vacancies in the highly oriented ZnO nanorods. Diameter control of the well-oriented and high-quality ZnO nanorods is achievable by variation of the growth conditions. Angle-dependent x-ray absorption and scanning photoelectron microscopy measurements suggest that the tip surfaces of the highly aligned ZnO nanorods are terminated by O ions and the nanorods are oriented in the [000-1] direction.
    The heterostructures of Zn–ZnO coaxial nanocables and ZnO nanotubes with an average diameter of 30 nm have been synthesized by simple pyrolysis of zinc acetylacetonate. High-resolution transmission electron microscopy analyses reveal that the Zn core and the ZnO sheath of the nanocables have an epitaxial relationship with their longitudinal axis oriented along the <001> direction. ZnO nanotubes with a wall thickness of 4 nm possess a single-crystal structure and appear to be the extension of the ZnO sheath of the coaxial nanocables. It is suggested that the ZnO nanotubes are formed by partial evaporation of Zn core of the Zn–ZnO coaxial nanocables.

    Part II.
    Diluted magnetic semiconductor Zn1-xCoxO nanorods with a Curie temperature higher than 350 K have been synthesized by in-situ doping of Co in ZnO nanorods using a simple thermal chemical vapor deposition method. Structural analyses indicated that the nanorod possesses the single-crystalline wurtzite structure and there is no segregated cluster of impurity phase appearing throughout the nanorod. The transparence of the Zn1-xCoxO nanorods in the visible region has been examined by UV-visible absorption. The fundamental absorptions of the Zn1-xCoxO nanorods estimated from the absorption spectra do not reveal pronounced difference from that of pure ZnO nanorods.

    目 錄 中文摘要 I 英文摘要 III 致謝 V 目錄 VII 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1.1 前言 1 1.2 奈米科技(nanotechnology) 1 1.3 研究動機 9 第二章 理論基礎與文獻回顧 10 2.1 成長一維奈米材料的方法 10 2.1-1 Vapor-Liquid-Solid(VLS)機制 13 2.1-2 Solution-Liquid-Solid(SLS)與Vapor-Solid(VS)機制 15 2.1-3氧化物促進成長法(oxide assisted growth) 16 2.1-4模板(template)輔助成長法 18 2.2 化學氣相沉積(Chemical Vapor Deposition) 21 2.3氧化鋅(ZnO) 23 2.3-1一維氧化鋅(ZnO)奈米材料之成長 29 VLS (Vapor-Liquid-Solid)成長法 29 熱揮發(thermal evaporation)成長法 38 MOCVD成長法 42 模板輔助成長法 46 2.4 自旋電子學(spintronics) 51 2.5 稀釋型鐵磁性半導體(Diluted Magnetic Semiconductors, DMSs) 60 2.6 以氧化鋅為主(ZnO-based)之稀釋型鐵磁性半導體 65 2.6-1 以鈷(Co)元素摻雜氧化鋅薄膜 65 2.6-2 以錳(Mn)元素摻雜氧化鋅薄膜 72 2.7以氧化鋅為主(ZnO-based)之稀釋型鐵磁性半導體一維奈米結構 73 第三章 實驗參數與研究方法 80 3.1 實驗流程圖 80 3.2 實驗設備 81 3.2-1 實驗用氣體及藥品 81 實驗用氣體 81 實驗用藥品 81 實驗用基板 81 3.2-2 儀器設備 82 3.3 實驗步驟 84 3.3-1 基板前處理 84 3.3-2 一維氧化鋅(ZnO)奈米柱之成長步驟 84 3.3-3 一維氧化鋅(ZnO)奈米管與Zn-ZnO同軸奈米電纜之成長步驟 85 3.3-4 一維鐵磁性Zn1-xCoxO奈米柱之成長步驟 85 3.4 分析儀器與鑑定 86 3.4-1 掃描式電子顯微鏡(SEM)分析 86 3.4-2 X光繞射分析儀(XRD) 88 3.4-3 穿透式電子顯微鏡(TEM)分析 89 3.4-4 光子激發光譜儀(Photoluminescence) 90 3.4-5 紫外線-可見光吸收光譜儀(UV-visible Absorption Spectroscopy) 90 3.4-6 拉曼光譜分析儀(Raman Spectroscopy) 92 3.4-7 電子微探分析儀(Electron Probe Microanalysis) 94 3.4-8 超導量子干涉磁量儀(Superconducting Quantum Interference Device) 94 3.4-9 X光吸收光譜與掃描式光電子能譜顯微儀(X-ray Absorption Spectroscopy and Scanning Photoelectron Microscopy) 97 3.4-9a同步幅射光源簡介 97 3.4-9b奈米材料之X光吸收光譜檢測與分析 98 第四章 熱化學氣相沈積(thermal CVD)法低溫成長一維氧化鋅(ZnO)奈米結構 103 4.1 低溫成長一維高方向性(well-aligned)之氧化鋅(ZnO)奈米柱 103 4.1.1 製程參數與實驗方法 103 4.1.2 氧化鋅(ZnO)奈米柱之型態(morphology)分析 104 4.1.3 氧化鋅(ZnO)奈米柱之結構(structure)分析 107 4.1.3-1 X光粉末繞射(XRD)分析 107 4.1.3-2 穿透電子顯微鏡(TEM)與高解析穿透式電子顯微鏡(HR-TEM)之微 結構分析 109 4.1.4 光學性質(optical property)分析 116 4.1.4-1 光子激發光譜(photoluminescence, PL)分析 116 4.1.4-2 紫外線-可見光吸收光譜(UV-Visible Absorption)分析 118 4.1.4-3 拉曼光譜(Raman spectrum)分析 120 4.1.5 氧化鋅(ZnO)奈米柱之X光吸收光譜(x-ray absorption spectroscopy) 與掃描式電子能譜(scanning electron potoemission)分析 121 4.1.6 製程參數對氧化鋅(ZnO)奈米柱成長之影響 127 4.1.6-1 基板溫度(Tsubstrate)效應 127 4.1.6-2 先驅物揮發溫度(Tv)效應 130 4.1.6-3 N2/O2 流量比(flow ratio)效應 132 4.1.6-4 操作壓力(pressure)效應 134 4.1.7 成長機制(growth mechanism) 136 4.1.8 結論 140 4.2 熱化學氣相沈積法(thermal CVD)成長一維Zn-ZnO同軸奈米電纜 (coaxial nanocables)與氧化鋅(ZnO)奈米管(nanotubes) 141 4.2.1 製程參數與實驗方法 141 4.2.2 形態(morphology)與結構(crystal structure)分析 142 4.2.3 成長機制(growth mechanism) 149 4.2.4 結論 151 第五章 熱化學氣相沈積法(thermal CVD)成長一維鐵磁性Zn1-xCoxO奈米柱 152 5.1 製程參數與實驗方法 152 5.2 鐵磁性Zn1-xCoxO奈米柱之型態(morphology)分析 153 5.3 鐵磁性Zn1-xCoxO奈米柱之結構(crystal structure)分析 156 5.3-1 X光粉末繞射(XRD)分析 156 5.3-2 穿透式電子顯微鏡(TEM)與高解析穿透式電子顯微鏡(HR-TEM)之 微結構分析 158 5.4 紫外線-可見光吸收光譜(UV-Visible Absorption)分析 164 5.5 Zn1-xCoxO奈米柱之磁性(magnetic property)分析 165 5.6 Zn1-xCoxO奈米柱之X光吸收光譜(x-ray absorption spectroscopy)分析 168 5.7 結論 172 第六章 總結論 174 參考文獻 177

    參考文獻
    [1] 陳東煌,奈米材料與奈米技術,上課講義。
    [2] R. Waser, Nanoelectronics and Information Technology, WILEY-VCH Verlag GmbH &
    Co. KGaA, Weinheim (2003).
    [3] M. Baumann, Learning From The Lotus Flower –Selfcleaning Coatings
    On Glass, Glass Processing Days, 330 (2003).
    [4] http://www.intel.com/research/silicon/mooreslaw.htm.
    [5] S. Iijima, Nature, 354, 56 (1991).
    [6] Y. Cui, C. M. Lieber, Science, 291, 851 (2001).
    [7] Y. Huang, X. Duan, Y. Cui, C. M. Lieber, Nano Lett., 2, 101 (2002).
    [8] X. Duan, Y. Huang, C. M. Lieber, Nano Lett., 2, 487 (2002).
    [9] Y. Cui, Q. Wei, H. Park, C. M. Lieber, Science, 293, 1289 (2001).
    [10] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo,
    P. Yang, Science, 292, 1897 (2001).
    [11] J. Johnosn, H. Yan, R. Schaller, L. Haber, R. Saykally, P. Yang, J. Phys.
    Chem. B., 105, 11387 (2001).
    [12] P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J.
    Pham, R. He, H. J. Choi, Adv. Funct. Mater., 12, 323 (2002).
    [13] H. T. Ng, J. Han, T. Yamada, P. Nguyen, Y. P. Chen, M. Meyyappan, Nano
    Lett., 4, 1247 (2004).
    [14] A. P. Alivisatos, Science, 271, 933 (1996).
    [15] V. L. Colvin, M. G. Schlamp, A. P. Alivisatos, Nature., 370, 354 (1994).
    [16] B. O. Dabbousi, M. G. Bawendi, O. Onitsuka, M. F. Rubner, Appl. Phys. Lett.,
    66, 1316 (1995).
    [17] N. Tessler, V. Medvedev, M. Kazes, S. Kan, U. Banin, Science, 295, 1506
    (2002).
    [18] N. G. Greeham, X. G. Peng , A. P. Alivisatos, Adv. Mater., 11, 923 (1999).
    [19] W. U. Huynh, X. Peng, A. P. Alivisatos, Phys. Rev. B., 54, 17628 (1996).
    [20] V. I. Klimov, A. A. Mihailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C.A.
    Leatherdate, H. J. Eisler, M. G. Bawendi, Science, 290, 314 (2000).
    [21] L. Pevesi, L. Dalnegro, C. Mazzoleni, G. Franzo, F. Priolo, Nature, 408, 440
    (2000).
    [22] X. Duan, Y. Huang, Y. Cui, J. Wang, C. M. Lieber, Nature, 409, 66 (2001).
    [23] Y. Xia, P. Yang,Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Ying, F. Kim, H. Yan,
    Adv. Mater., 15, 353 (2003).
    [24] L. Esaki, in Science and Technology for Mesoscopic Structures, Edited, S.
    Namba, C. Hamaguchi, T. Ando, Springer Verlag, Tokyo (1992).
    [25] X. Duan, Nanowires Nanoelectronics Assembled from the Bottom-up, Ph.D
    thesis, HARVARD UNIVERSITY, March (2002).
    [26] X. Duan, J. Wang, C. M. Lieber, Appl. Phys. Lett., 76, 1116 (2000).
    [27] G. M. Bolm, J. M. Woodall, Appl. Phys. Lett., 17, 373 (1970).
    [28] V. N. Bessolov, M. V. Lebedev, Semiconductors, 32, 1141 (1998).
    [29] O. I. Micic, J. Sprague, Z. Lu, A. J. Nozik, Appl. Phys. Lett., 68, 3150
    (1996).
    [30] H. Ohta, K. Kamamura, M.Orita, M. Hirano, N. Sarukura, H. Hosono, Appl.
    Phys. Lett., 77, 475 (1996).
    [31] S. R. Whaley, D. S. English, E. L. Hu, P. F. Barbara, A. M. Belcher, Nature,
    405, 665 (2000).
    [32] R. S. Wagner, W. C. Ellis, Appl. Phys. Lett., 4, 89 (1964).
    [33] X. F. Duan, C. M. Lieber, Adv. Mater., 12, 298 (2000).
    [34] X. F. Duan, C. M. Lieber, J. Am. Chem. Soc., 122, 188 (2000).
    [35] C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H.
    Chen, L. C. Chen, J. Y. Peng, Y. F. Chen, J. Am. Chem. Soc., 123, 2791
    (2001).
    [36] Y. W. Wang, L. D. Zhang, C. H. Liang, G. Z. Wang, X. S. Peng, Chem. Phys.
    Lett., 357, 314 (2002).
    [37] Y. J. Chen, J. B. Li, Y. S. Han, X. Z. Yang, J. H. Dai, J. Cryst. Growth,
    245, 163 (2002).
    [38] Y. Wu, P. Yang, Chem. Mater., 12, 605 (2000).
    [39] Y. Wu, P. Yang, J. Am. Chem. Soc., 123, 3165 (2001).
    [40] M. S. Gudiksen, C. M. Lieber, J. Am. Chem. Soc., 122, 8801 (2000).
    [41] T. J. Trentler, K. M. Hickman S. C. Geol, A. M. Viano, P. C. Gibbson, W.
    E. Buhro, Science, 270, 1791 (1995).
    [42] P. D. Markowitz, M. P. Zach, P. C. Gibbson, R. M. Penner, W. E. Buhro, J.
    Am. Chem. Soc., 123, 4502 (2001).
    [43] S. T. Lee, N. Wang, Y. F. Zhang, Y. H. Tang, MRS Bulletin, 24, 36 (1999).
    [44] W. S. Shi, H. Y. Peng, N. Wang, C. P. Li, L. Xu, C. S. Lee, L. Kalish, S. T. Lee, J. Am. Chem. Soc., 123, 11095 (2001).
    [45] S. T. Lee, N. Wang, C. S. Lee, Mater. Sci. Eng. A., 286, 16 (2000).
    [46] E. T. T. Jones, O. M. Chyan, M. Wrighton, J. Am. Chem. Soc., 109, 5526
    (1987).
    [47] J. Jorritsma, M. A. M. Gijs, J. M. Kerkhof, J. G. H. Stienen,
    Nanotechnology, 7, 263 (1996).
    [48] E. Kapon, K. Kash, E. M. Clausen Jr., D. M. Hwang, E. Colas, Phys. Phys.
    Lett., 60, 477 (1992).
    [49] G. Fasol, Science, 280, 545 (1998).
    [50] R. M. Penner, J. Phys. Chem. B.,106, 3339 (2002).
    [51] H. Ringsdorf, B. Schlarb, J. Venzmer, Angew. Chem. Int. Ed. Engl., 27, 113
    (1988).
    [52] M. Li, H. Schnablegger, S. Mann, Nature, 10, 1358 (1999).
    [53] Y. Y. Yu, S. S. Chang, C. L. Lee, C. R. C. Wang, J. Phys. Chem. B., 101,
    6661 (1997).
    [54] D. L. Smith, Thin Films by Chemical Vapor Deposition principle and practice,
    Mcgraw-Hill, USA (1995).
    [55] D. S. King, R. M. Nix, J. Catal., 160, 76 (1996).
    [56] T. Minami, Mater. Res. Soc. Bull., 25, 38 (2000).
    [57] D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, T. Goto,
    Appl. Phys. Lett., 70, 2230 (1997).
    [58] J. Zhong, A. H. Kitai, P. Mascher, W. Puff, J. Electrochem. Soc., 140, 3644
    (1993).
    [59] P. Zu, Z. K. Tang, G. K. L Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, Y.
    Segawa, Solid State Commun., 103, 459 (1997).
    [60] H. Co, J. Y. Xu, E. W. Seelig, R. P. H. Chang, Appl. Phys. Lett., 76, 2997
    (2000).
    [61] http://ncsr.csci-va.com/materials/zno.asp.
    [62] S. R. Morrison, Sensors and Actuators, 12, 425 (1987).
    [63] J. C. Anderson, Journal of Vaccum Science Technology, A4, 610 (1986).
    [64] U. Lampe, Ceramics Bulletin, 69, 1959 (1990).
    [65] Y. Chen, D. M. Bagnall, H. Koh, K. Park, K. Hiraga, Z. Zhu, T. Yao, J. Appl.
    Phys., 84, 3912 (1998).
    [66] A. Ohtomo, M. Kawasaki, Y. Sakurai, I. Ohkubo, R. Shiroki, Y. Yoshida, T.
    Yasuda, Y. Segawa, H. Koinuma, Mater. Sci. Eng. B., 56, 263 (1998).
    [67] A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y.
    Yoshida, T. Yasuda, Y. Segawa, Appl. Phys. Lett., 72, 2466 (1998).
    [68] T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura, T.
    Yasuda, H. Koinuma, Appl. Phys. Lett., 78, 1237 (2001).
    [69] N. Fujimura, T. Nishihara, S. Goto, J. Xu, T. Ito, J. Cryst. Growth., 130,
    269 (1993).
    [70] R. A. P. O. Well, W. E. Spicer, J. C. McMenamin, Phys. Rev. B., 6, 3056
    (1972).
    [71] R. D. Vispute, V. Talyansky, S. Choopun, R. P. Sharma, T. Venkatesan, M. He,
    X. Tang, J. B. Halpern, M. G. Spencer, Y. X. Li , L. G. Salamanca-Riba, A.
    A. Iliadis, K. A. Jones, Appl. Phys. Lett., 73, 348 (1998).
    [72] D. C. Look, J. W. Hemsky, J. R. Sizelove, Phys. Rev. Lett., 82, 2552 (1999).
    [73] B. J. Lin, S. H. Bae, S. Y. Lee, S. Im, Mater. Sci. Eng. B., 71, 301
    (2000).
    [74] C. G. Van de Walle, Phys. Stat. Solidi. B., 299, 221 (2002).
    [75] D. M. Hofmann, A. Hofstaetter, F. Leiter, H. Zhou, F. Henecker, B.
    Meyer, S. B. Orlinskii, J. Schmidt, P. G. Baranov, Phys. Rev. Lett., 88,
    045504 (2002).
    [76] B. J. Jin, S. Im, S.Y. Lee, Thin Solid Films, 366, 107 (2000).
    [77] E. G. Bylander, J. Appl. Phys., 49, 1188 (1978).
    [78] N. Riehl, O. Ortman, Z. Elektrochem., 60, 149 (1952).
    [79] F. A. Kr¨oger, H. J. Vink, J. Chem. Phys., 22, 250 (1954).
    [80] I. Y. Prosanov, A. A. Politov, Inorg. Mater., 31, 663 (1995).
    [81] N.Y. Garces, L. Wang, L. Bai, N. C. Giles, L. E. Halliburton, G.
    Cantwell, Appl. Phys. Lett., 81, 622 (2002).
    [82] H. J. Egelhaaf, D. Oelkrug, J. Cryst. Growth., 161, 190 (1996).
    [83] D. Hahn, R. Nink, Phys. Cond. Matt., 3, 311 (1965).
    [84] M. Liu, A. H. Kitai, P. Mascher, J. Lumin., 54, 35 (1992).
    [85] A. R. Hutson, Phys. Rev., 108, 222 (1957).
    [86] D. Florescu, L. G. Mourok, F. H. Pollack, D. C. Look, G. Cantwell, X. Li, J.
    Appl. Phys., 91, 890 (2002).
    [87] Y. Kanai, Jpn. J. Appl. Phys., 30, 703 (1991).
    [88] Y. Kanai, Jpn. J. Appl. Phys., 30, 2021 (1991).
    [89] J. A. Savage, E. M. Dodson, J. Mater. Sci., 4, 809 (1969).
    [90] A. Valentini, F. Quaranta, M. Rossi, G. Battaglin, J. Vac. Sci. Technol. A.,
    9, 286 (1991).
    [91] A. Onedera, N. Tamaki, K. Jin, H. Yamashita, Jpn. J. Appl. Phys., 36,
    6008 (1997).
    [92] G. Weise, E. M. Fechner, G. Owsian, D. Kraut, Thin Solid Films, 32,
    87 (1976).
    [93] P. H. Kasai, Phys. Rev., 130, 989 (1963).
    [94] H. Wolk, S. Deubler, D. Forkel, H. Foettinger, M. Iwatschenko-Borho,
    F. Meyer, M. Renn, W. Witthuhn, R. Helbig, Mater. Sci. Forum., 10–12
    (Part 3) 863 (1986).
    [95] T. Nagata, T. Shimura, Y. Nakano, A. Ashida, N. Fujimura, T. Ito, Jpn.
    J. Appl. Phys., 40, 5615 (2001).
    [96] C. H. Park, S. B. Zhang, S. H. Wei, Phys. Rev. B., 66, 073202 (2002).
    [97] T. Yamamoto, H. K. Yoshida, Jpn. J. Appl. Phys., 38, L166 (1999).
    [98] N. Y. Garces, N. C. Giles, L. E. Halliburton, G. Cantwell, D. B. Eason, D.
    C. Reynolds, D. C. Look, Appl. Phys. Lett., 80, 1334 (2002).
    [99] K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga, A. Shimizu,
    Jpn. J. Appl. Phys., 36, L1453 (1997).
    [100] X. L. Guo, H. Tabata, T. Kawai, J. Cryst. Growth., 223, 135 (2001).
    [101] X. L. Guo , H. Tabata, T. Kawai, Optical Materials, 19, 229 (2002).
    [102] K. Iwata, P. Fons, A. Yamada, K. Matsubara, S. Niki, J. Cryst. Growth.,
    209, 526 (2000).
    [103] Y. Yan, S. B. Zhang, S. T. Pantelides, Phys. Rev. Lett., 86, 5723 (2001).
    [104] D.C. Look, D.C. Reynolds, C.W. Litton, R. L. Jones, D. B. Eason, G.
    Cantwell, Appl. Phys. Lett., 81, 1830 (2002).
    [105] X. L. Guo, J. H. Choi, H. Tabata, T. Kamai, Jpn. J. Appl. Phys., 40, L177
    (2001).
    [106] D. Kaneko, H. Shouji, T. Kawai, K. K. No, Langmuir, 16, 4086 (2000).
    [107] E. A. Meulenkamp, J. Phys. Chem. B., 102, 5566 (1998).
    [108] J. Xu, Q. Pan, Y. Shun, Z. Tian, Sensors and Actuators B, 66, 277 (2000).
    [109] M. H. Huang, Yi. Wu, H. Feick, N. Tran, E. Weber, P. Yang, Adv. Mater., 13,
    113 (2001).
    [110] Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, S. Q. Feng, Appl. Phys. Lett., 78,
    407 (2001).
    [111] Y. W. Wang, L. D. Zhang, G. Z. Wang, X. S. Peng, Z. Q. Chu, C. H. Liang, J.
    Cryst. Growth., 234, 171 (2002).
    [112] H. T. Ng, J. Li, M. K. Smith, P. Nguyen, A. Cassell, J. Han, M. Meyyappan,
    Science, 300, 1249 (2003).
    [113] H. Cao, J. Y. Xu, D. Z. Zhang, S. H. Chang, S. T. Ho, E. W. Seelig, X. Liu,
    R. P. H. Chang, Phys. Rev. Lett., 84, 5584 (2000).
    [114] D. A. Gaul, W. S. R. Jr, Adv. Mater., 12, 935 (2000).
    [115] M. A. Hasse, J. Qui, J. M. De Puydt, Appl. Phys. Lett., 59, 1272 (1991).
    [116] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H.
    Kiyoku, Y. Sugimoto, Jpn. J. Appl. Phys., 35, L74 (1996).
    [117] B. E. A. Saleh, M. C. Teich, Fundamental of Photonics, Wiley, New York
    (1991).
    [118] Z. W. Pan, Z. R. Dai, Z. L. Wang, Science, 291, 1947 (2001).
    [119] Y. Dai, Y. Zhang, Q. K. Li, C.W. Nan, Chem. Phys. Lett., 358, 83 (2002).
    [120] Z. Zhou, W. Peng, S. Ke, H. Deng, Journal of Materials Processing
    Technology, 89, 415 (1999).
    [121] Z. L. Wang, Nanostructures of zinc oxide, materials today, 24 (2004).
    [122] W. I. Park, D. H. Kim, S. W. Jung, G. C. Yia, Appl. Phys. Lett., 80, 4232
    (2002).
    [123] W. I. Park, Y. H. Jun, S. W. Jung, G. C. Yi, Appl. Phys. Lett., 82, 964
    (2003).
    [124] W. I. Park, G. C. Yi, M. Kim S. J. Pennycook, Adv. Mater., 15, 526 (2003).
    [125] B. P. Zhang, N. T. Binh, K. Wakatsuki, Y. Segawa, Appl. Phys. Lett., 84,
    4098 (2004).
    [126] W. I. Park, G. C. Yi, J. W. Kim, S. M. Park, Appl. Phys. Lett., 82, 4358
    (2003).
    [127] Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, Y.
    Segawa, Appl. Phys. Lett., 72, 3270 (1998).
    [128] M. Kawasaki, A. Ohtomo, I. Ohkubo, H. Koinuma, Z. K. Tang, P. Yu, G. K. L.
    Wong, B. P. Zhang, Y. Segawa, Mater. Sci. Eng. B., 56, 239 (1998).
    [129] M. Hawley, I. D. Raistrick, J. G. Beery, R. J. Houlton, Science 251, 1587
    (1991).
    [130] Y. Li, G. W. Meng, L. D. Zhang, F. Phillipp, Appl. Phys. Lett., 76, 2011
    (2000).
    [131] C. H. Liu, W. Yiu, F. C. K. Au, J. X. Ding, C. S. Lee, S. T. Lee, Appl.
    Phys. Lett., 83, 3168 (2003).
    [132] C. H Liu, J. A. Zapien, Y. Yao, X. M, C. S. Lee, S. S. Fan, S. T. Lee, Adv.
    Mater., 15, 838 (2003).
    [133] P. H. Kasai, Phys. Rev., 130, 989 (1963).
    [134] N. Riehl, H. Ortman, J. Electrochem. Soc., 60, 149 (1956).
    [135] F. A. Kroger, H. J. Vink, J. Chem. Phys., 22, 250 (1954).
    [136] M. Liu, A. H. Kitai, P. Masher, J. Lumin., 54, 35 (1992).
    [137] D. Habn, R. Nink, J. Phys.: Condens. Matter., 3, 311 (1965).
    [138] R. Dinger, Phys. Rev. Lett., 23, 579 (1969).
    [139] K. Vanheusden, W. L. Warren, C. H. Seager, D. K. Tallant, J. A. Voigt, B.
    E. Gnade, J. Appl. Phys., 79, 7983 (1996).
    [140] D. D. Awschalom, M. E. Flatte, N. Samarth, 張有毅,陳企寧翻譯,科學人,第45
    頁,2002。
    [141] S. J. Pearton, C. R. Abernathy, D. P. Norton, A. F. Hebard, Y. D. Park, L.
    A. Boatner, J. D. Budai, Mater. Sci. Eng., R40, 137 (2003).
    [142] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molna´r,
    M. L. Roukes, A. Y. Chtchelkanova, D. M. Treger, Science, 294, 1488 (2001).
    [143] M. N. Baibich, J. M. Broto, A. Fert, F. N. VanDau, F. Petroff, P. Eitenne,
    G. Creuzet, A. Friederich, J. Chazelas, Phys. Rev. Lett., 61, 2472 (1988).
    [144] J. Barnas, A. Fuss, R. Camley, P. Grunberg, W. Zinn, Phys. Rev. B., 42,
    8110 (1990).
    [145] news feature “Meet the spin doctors”, Nature, 404, 918 (2000).
    [146] J. S. Moodera, L. R. Kinder, T. M. Wong, R. Meservey, Phys. Rev. Lett., 74,
    3273 (1995).
    [147] T. Miyazaki, N. Tezuka, J. Magn. Magn. Mater., 151, 403 (1995).
    [148] G. Zorpette, IEEE SPECTRUM, 30 (2001).
    [149] S. Datta, B. A. Das, Appl. Phys. Lett., 56, 665 (1990).
    [150] H. Ohno, D. D. Awschalom, Nature, 402, 790 (1999).
    [151] H. J. Zhu, M. Ramsteiner, H. Kostial, M. Wassermeier, H. P. Schönherr, K.
    H. Ploog, Phys. Rev. Lett., 87, 016601 (2001).
    [152] S. J. Pearton, C. R. Abernathy, D. P. Norton, A. F. Hebard, Y. D. Park, L.
    A. Boatner, J. D. Budai, Mater. Sci. Eng., R40, 137 (2003).
    [153] H. Ohno, Science, 281, 951 (1998).
    [154] A. Haury, A. Wasiela, A. Arnoult, J. Cibert, S. Tatarenko, T. Dietl, Y.
    Merle d'Aubigné, Phys. Rev. Lett., 79, 511 (1997).
    [155] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science, 287, 1019
    (2000).
    [156] T. Dietl , nature materials, 2, 646 (2003).
    [157] G. T. Thaler, M. E. Overberg, B. Gila, R. Frazier, C. R. Abernathy, S. J.
    Pearton, J. S. Lee, S. Y. Lee, Y. D. Park, Z. G. Khim, J. Kim, F. Ren,
    Appl. Phys. Lett., 80, 3964 (2002).
    [158] T. Fukumura, Z. Jin, M. Kawasaki, T. Shono, T. Hasegawa, S. Koshihara,
    Appl. Phys. Lett., 78, 958 (2001).
    [159] K. Sato, H. K. Yoshida, Jpn. J. Appl. Phys., 40, L334 (2001).
    [160] K. Sato, H. K. Yoshida, Jpn. J. Appl. Phys., 39, L555 (2000).
    [161] K. Sato, H. K. Yoshida, Jpn. J. Appl. Phys., 40, L485 (2001).
    [162] K. Ueda, H. Tabata, T. Kawai, Appl. Phys. Lett., 79, 988 (2001).
    [163] Z. Jin, T. Fukumura, M. Kawasaki, K. Ando, H. Saito, T. Sekiguchi, Y. Z.
    Yoo, M. Murakami, Y. Matsumoto, T. Hasegawa, H. Koinuma, Appl. Phys. Lett.,
    78, 3824 (2001).
    [164] W. Prellier, A. Fouchet, B. Mercey, C. Simon, B. Raveau, Appl. Phys. Lett.,
    82, 3490 (2003).
    [165] K. Rode, A. Anane, R. Mattana, J. P. Contour, O. Durand, R. LeBourgeois, J.
    Appl. Phys., 93, 7676 (2003).
    [166] J. H. Kim, H. Kim, D. Kim, Y. E. Ihm , W. K. Choo, Physica B, 327, 304
    (2003).
    [167] J. H. Kim, W. K. Choo, H. Kim, D. Kim, Y. E. Ihm, J. Korean Phys. Soc., 42,
    S258 (2003).
    [168] Y. Z. Yoo, T. Fukumura, Z. Jin, K. Hasegawa, M. Kawasaki, P. Ahmet, T.
    Chikyow, H. Koinuma, J. Appl. Phys., 90, 4246 (2001).
    [169] S. W. Lim, S. K. Hwang, J. M. Myoung, Solid State Commun., 125, 231 (2003).
    [170] J. H. Kim, H. Kim, D. Kim, Y. E. Ihm, W. K. Choo, J. Appl. Phys., 92, 6066
    (2002).
    [171] H. J. Lee, S. Y. Jeong, C. R. Cho, C. H. Park, Appl. Phys. Lett., 81, 4020
    (2002).
    [172] T. Fukumura, Z. Jin, A. Ohtomo, H. Koinuma, Appl. Phys. Lett., 75, 3366
    (1999).
    [173] X. M. Cheng, C. L. Chien, J. Appl. Phys., 93, 7876 (2003).
    [174] D. S. Kim, H. M. Kim, S. U. Yuldashev, S. J. Lee, T. W. Kang, D. Y. Kim, J.
    Korean Phys. Soc., 42, S333 (2003).
    [175] A. Tiwari, C. Jin, A. Kvit, D. Kumar, J. F. Muth, J. Narayan, Solid State
    Commun., 121, 371 (2002).
    [176] S. W. Jung, S. J. An, G. C. Yi, C. U. Jung, S. I. Lee, S. Cho, Appl. Phys.
    Lett., 80, 4561 (2002).
    [177] T. Wakano, N. Fujimura, Y. Morinaga, N. Abe, A. Ashida, T. Ito, Physica E.,
    10, 260 (2001).
    [178] H. Saeki , H. Tabata, T. Kawai, Solid State Commun., 120, 439 (2001).
    [179] S. J. Han, J. W. Song, C. H. Yang, S. H. Park, J. H. Park, Y. H. Jeong, K.
    W. Rhie, Appl. Phys. Lett., 81, 4212 (2002).
    [180] S. G. Yang, A. B. Pakhomov, S. T. Hung, C. Y. Wong, IEEE TRANSCATION ON
    MAGNETICS, 38, 2877 (2002).
    [181] T. Fukumura, Z. Jin, M. Kawasaki, T. Shono, T. Hasegaw, S. Koshihara, H.
    Koinuma, Appl. Phys. Lett., 78, 958 (2001).
    [182] S. W. Jung, W. I. Park, G. C. Yi, M. Kim, Adv. Mater., 15, 1358 (2003).
    [183] Y. Q. Chang, D. B. Wang, X. H. Luo, X. Y. Xu, X. H. Chen, L. Li, C. P.
    Chen, R. M. Wang, J. Xu, D. P. Yu, Appl. Phys. Lett., 83, 4020 (2003).
    [184] Y. M. Cho, W. K. Choo, H. Kim, D. Kim, Y. Ihm, Appl. Phys. Lett., 80, 3358
    (2002).
    [185] D. P. Norton, S. J. Pearton, Appl. Phys. Lett., 82, 239 (2003).
    [186] 汪建民,材料分析,中國材料科學學會,台灣,1998。
    [187] J. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, A. D. Romig, Jr., C.
    E. Lyman, C. Fiori, E. Ligshin, Scanning Electron Microscopy and X-Ray
    microanalysis, 2nd Ed., Plenum Press, New York (1992).
    [188] B. Fultz, J. M. Howe, Transmission Electron Microscopy and
    Diffractometry of Materials, Springer-Verlag Berlin Heidelberg (2001).
    [189] 行政院國家科學委員會精密儀器發展中心儀器總覽,基本物理量量測儀。
    [190] A. R. Aicha, E. Riad, F. D. Barlow, Thin Film Technology Handbook, The
    McGraw-Hill Companies (1998).
    [191] 呂登復,科儀新知,第六卷第三期,第七十五頁,1984。
    [192] 楊鴻昌,科儀新知,第十二卷第六期,第七十二頁,1991。
    [193] 同步輻射中心-中心資訊-同步幅射光源簡介。
    (http://www.srrc.gov.tw/ch/general/center-12.html)
    [194] 林中魁、林鴻明、童鈞彥、劉韋良、李丕耀、胡宇光,奈米材料之X光吸收光譜檢測與
    分析,工業材料,155期,第171頁,1999。
    [195] B. Ravel, Applications of X-Ray Absorption Spectroscopy.
    (http://feff.phys.washington.edu/~ravel/).
    [196] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt,
    B. E. Gnade, J. Appl. Phys., 79, 7983 (1996).
    [197] Z. Fu, B. Lin, G. Liao, Z. Wu, J. Cryst. Growth., 193, 316 (1998).
    [198] X. L. Xu, S. P. Lau, J. S. Chen, G. Y. Chen, B. K. Tay, J. Cryst. Growth.,
    223, 201, (2001).
    [199] X. S. Peng, J. Mater. Chem., 12, 1602 (2002).
    [200] S. W. Peng, Appl. Phys. A., 74, 437 (2001).

    下載圖示 校內:2005-10-12公開
    校外:2005-10-12公開
    QR CODE