| 研究生: |
賴健榮 Lai, Jian-Rong |
|---|---|
| 論文名稱: |
四圓管板鰭管式熱交換器之熱傳特性研究 Study of Heat-transfer Characteristics on the Fin of Four-tube Plate Finned-tube Heat Exchangers |
| 指導教授: |
陳寒濤
Chen, Han-Taw |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 數值逆算法 、實驗方法 、板鰭管式熱交換器 、熱傳性能 |
| 外文關鍵詞: | inverse scheme, experimental method, plate finned-tube heat exchangers, heat-transfer characteristics |
| 相關次數: | 點閱:141 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以實驗方法與數值逆算法來預測於不同鰭片間距及外界風速下,四支圓管為同線排列與交錯排列之板鰭管式熱交換器的平均熱傳係數與等溫平均熱傳係數。此四支圓管可能有不同的溫度,因此鰭片上之熱傳係數可能為不均勻分佈,故於進行數值逆算法之前,整個鰭片將先被分割成數個小區域,且每個小區域上之平均熱傳係數假設為一未知的常數。而後,本文以有限差分法配合最小平方法、外界空氣溫度量測值及鰭片溫度量測值之逆算法來求得本文結果。結果顯示於自然對流條件下,平均熱傳係數及等溫平均熱傳係數會隨著鰭片間距增加而增加,並且會逐漸趨近某一固定值。於強迫對流條件下,平均熱傳係數及等溫平均熱傳係數會隨著外界風速及鰭片間距的增加而增加。其他重要的發現為於第二排圓管後方之小區域的熱傳係數一般皆會比其他區域的值低,此乃由於此下游區域會有低速的尾流區發生所致。另外,交錯排列之板鰭管式熱交換器的平均熱傳係數及等溫平均熱傳係數均較同線排列的高,此意味著交錯排列之板鰭管式熱交換器具有較佳的散熱效果。為了證明本文結果之可靠性,本文之等溫平均熱傳係數值將與目前存在之經驗公式或商業計算流體力學軟體所求得之結果相比較。此外,本文也利用商用軟體Icepak配合本文之實驗數據來求得鰭片間之流場流動情形及鰭片上各量測點的溫度值。
The present study applies the experimental and numerical inverse methods to predict the average heat transfer coefficient and heat transfer coefficient under the isothermal situation on a vertical square fin of the four-tube plate finned-tube heat exchangers for in-line and staggered arrangements and various fin spacings and air velocities. These tubes may not have the same temperature in the present study. Due to the non-uniform distribution of the heat transfer coefficient, the whole plate fin is divided into several sub-fin regions before performing the inverse scheme, and the average heat transfer coefficient on each sub-fin region is assumed to be unknown. Later, the inverse scheme of the finite difference method in conjunction with the Least squares scheme and experimental measured temperatures is applied to determine the present results. Results show that the average heat transfer coefficient and isothermal heat transfer coefficient in nature convection increase with increasing the fin spacing. These values can respectively approach their corresponding asymptotic values obtained from a single square fin as fin spacing grow to infinity. However, the average heat transfer coefficient and isothermal heat transfer coefficient in force convection increase with increasing the fin spacing and air velocity. Other important findings are that the average heat transfer coefficients in the upstream and wake fin regions of the second row may be generally lower than those on other sub-fin regions. It must be noted that the staggered arrangement exhibits higher average heat transfer coefficient than the in-line. This implies that the staggered plate finned-tube heat exchangers have a better heat dissipation. In order to validate the accuracy and reliability of the present results, the isothermal heat transfer coefficient values are compared with those obtained from the existing correlations or computational fluid dynamics commercial code. Besides, the present study also applies the commercial software, Icepak, in conjunction with the present experimental data to obtain the inter-fin flow field of the plate finned-tube heat exchanger and temperature measurements at various measurement locations of the fin.
[1] W. A. Khan, J. R. Culham, M. M. Yovanovich, “Analytical model for convection heat transfer from tube banks,” J. Thermophysics Heat Transfer, vol. 20, pp. 720-727, 2006.
[2] F. C. McQuiston, “Correlation of heat, mass and momentum transport coefficients for plate-fin-tube heat transfer surface,” ASHRAE Trans., vol. 84, pp. 294-308, 1978.
[3] E. C. Rosman, P. Carajilescov, F. E. M. Saboya, “Performance of one and two-row tube and plate fin heat transfer,” ASME J. Heat Transfer, vol. 106, pp. 627-632, 1984.
[4] D. L. Gray, R. L. Webb, “Heat transfer and friction correlations for plate finned-tube heat exchangers having plain fins,” in: Proc. 8th. Heat Transfer Conference, pp. 2745-2750, 1986.
[5] H. Ay, J. Y. Jang, J. N. Yeh, “Local heat transfer measurements of plate finned-tube heat exchangers by infrared thermography,” Int. J. Heat Mass Transfer, vol. 45, pp. 4069-4078, 2002.
[6] C. H. Huang, I. C. Yuan, H. Ay, “An experimental study in determining the local heat transfer coefficients for the plate finned-tube heat exchangers,” Int. J. Heat Mass Transfer, vol. 52, pp. 3057-3066, 2009.
[7] C. J. Chen, T. S. Wung, “Finite analytic solution of convective heat transfer for tube arrays in cross flow: part II—heat transfer analysis,” ASME J. Heat Transfer, vol. 111, pp. 641-648, 1989.
[8] J. Y. Jang, M. C. Wu, W. J. Chang, “Numerical and experimental studies of three-dimensional plate-fin and tube heat exchangers,” Int. J. Heat Mass Transfer, vol. 39, pp. 3057-3066, 1995.
[9] X. P. Ouyang, G. P. Xiong, “Comparison study of thermal performance of plate fin type heat exchanger with aligned and staggered arrangements,” Chinese J. Power Eng., vol. 25, pp. 271-274, 2005.
[10] S. Tiggelbeck, N. K. Mitra, M. Fiebig, “Experimental investigation of heat transfer enhancement and flow losses in channel with double row of longitudinal vortex generators,” Int. J. Heat Mass Transfer, vol. 36, pp.2327-2337, 1993.
[11] Y. H. Kim, Y. C. Kim, “Heat transfer characteristics of flat plate finned-tube heat exchangers with large fin pitch,” Int. J. Refrig., vol. 28, pp. 851–858, 2005.
[12] H. T. Chen, J. C. Chou, “Investigation of natural-convection heat transfer coefficient on a vertical square fin of finned-tube heat exchangers,” Int. J. Heat Mass Transfer, vol. 49, pp. 3034–3044, 2006.
[13] H. T. Chen, J. C. Chou, H. C. Wang, “Estimation of heat transfer coefficient on the vertical plate fin of finned-tube heat exchangers for various air speeds and fin spacings,” Int. J. Heat Mass Transfer, vol. 50, pp. 45–57, 2007.
[14] G. D. Raithby, K. G. T. Hollands, “Natural Convection,” in: W. M. Rohsenow, J. P. Hartnett, Y. I. Cho (Eds.), “Handbook of Heat Transfer,” McGraw-Hill, New York, pp. 4.36-4.38, 1985.
[15] L. A. O. Rocha, F. E. M. Saboya, J. V. C. Vargas, “A comparative study of elliptical and circular sections in one- and two-row tubes and plate fin heat exchangers,” Int. J. Heat Fluid Flow, vol. 18, pp. 247-252, 1997.
[16] S. M. Saboya, F. E. M. Saboya, “Experiments on elliptic sections in one- and two-row arrangements of plate fin and tube heat exchangers,” Exp. Thermal Fluid Science, vol. 24, pp. 67-75, 2001.
[17] R. S. Matos, J. V. C. Vargas, T. A. Laursen, A. Bejan, “Optimally staggered finned circular and elliptic tubes in forced convection,” Int. J. Heat Mass Transfer, vol. 47, pp. 1347–1359, 2004.
[18] J. Y. Kim, T. H. Song, “Effect of tube alignment on the heat/mass transfer from a plate fin and two-tube assembly: naphthalene sublimation results,” Int. J. Heat Mass Transfer, vol. 46, pp. 3051–3059, 2003
[19] D. Bougeard, “Infrared thermography investigation of local heat transfer in a plate fin and two-tube rows assembly,” Int. J. Heat Fluid Flow, vol. 28, pp. 988–1002, 2007.
[20] Tony W. H. Sheu, S. F. Tsai, “A comparison study on fin surfaces in finned-tube heat exchangers,” Int. J. Numer. Method H., Vol. 9, No. 1, pp. 92-106, 1999.
[21] M. S. Mon, U. Gross, “Numerical study of fin-spacing effects in annular-finned tube heat exchangers,” Int. J. Heat Fluid Flow, vol. 47, pp. 1953-1964, 2004.
[22] M. Lee, Y. H. Kim, H. Lee, Y. C. Kim, “Air-side heat transfer characteristics of flat plate finned-tube heat exchangers with large fin pitches under frosting conditions,” Int. J. Heat Mass Transfer, vol. 53, pp. 2655–2661, 2010.
[23] 王益彤, “利用逆演算法配合實驗數據預測單橢圓管式之管鰭片蒸發器於結霜狀態下之熱傳遞係數,” 成功大學機械工程研究所碩士論文, 2004.
[24] 于承廷, “並列式板鰭管式熱交換器之熱傳特性預測,” 成功大學機械工程研究所碩士論文, 2010.
[25] A. Bejan, “Heat Transfer,” John Wiley & Sons, New York, pp. 53-62, 1993.
[26] R. L. Webb, “Principles of Enhanced Heat Transfer,”:John Wiley & Sons, New York, pp. 148-151, 1994
[27] W. Elenbaas, “Heat dissipation of parallel plates by free convection,” Physica, vol. 9, pp. 1-28, 1942.
[28] F. P. Incropera, D. P. Dewitt, T. L. Bergman, A. S. Lavine, “Fundamentals of Heat and Mass Transfer,” John Wiley & sons (Asia), New York, pp. 8, 2007.
[29] E. M. Sparrow, J. M. Ramsey, “Heat transfer and pressure drop for staggered wall-attached array of cylinders with tip clearance,” Int. J. Heat Mass Transfer, vol. 21, pp. 1369–1377, 1978.