| 研究生: |
張志偉 Chang, Chih-Wei |
|---|---|
| 論文名稱: |
以光學尋跡系統評估傳統人工膝關節置換之定位 The Limb Alignment in Conventional Total Knee Arthroplasty-Evaluation with Optical Tracking System |
| 指導教授: |
張志涵
Chang, Chih-Han |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 下肢軸向排列 、導航手術 、光學動作循跡系統 、人工膝關節置換手術 、電腦輔助骨科手術 |
| 外文關鍵詞: | optical motion tracking system, total knee arthroplasty, computer assisted orthopaedic surgery, navigation, lower extremity alignment |
| 相關次數: | 點閱:75 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一般臨床上以傳統x光測量下肢方式雖然常見,但受諸多因素影響,造成評估結果不夠精確;此外傳統x光攝影僅能提供臨床醫師有限的二維空間資訊;對於三維資訊的獲得,常得借助其它特別的方式如電腦斷層攝影。
然而,在實驗室中,這些測量的問題可以動作循跡系統的使用來解決並獲得較佳的準確性。近年來,動作循跡系統已被整合入電腦輔助骨科手術的範疇,來增加手術的準確度。
就我們所知,大多數比較不同手術方式結果的研究,都是採用術後x光攝影來評估--無形間,增加了測量誤差的機會; 僅有少數文獻提及使用導航手術中的光學動作循跡系統來作為測量評估工具,區分不同手術方式的優劣!
這研究的目的在於延伸目前導航系統的功能,將其上的光學動作循跡系統用於測量傳統的人工膝關節置換手術中下肢軸向排列變化;並嘗試與依現今導航軟體指引下人工膝關節置換手術結果進行分析、比較.
因此研究的過程必須驗證導航手術中的動作循跡系統能否順利與傳統人工膝關節置換手術結合,提供有效的術中測量,並以所留存的術中測量結果建立資料,方便對往後的術後追蹤找出關連性.
Traditional radiographic measures of the lower limb to indicate abnormal loading are common and critical. To improve the quality, every effort is made to maintain a standardized position and reduce the inconsistency from inter- and intra-observer variances. Unfortunately, many other factors still alter the accuracy and reproducibility. Besides, only few data are available from traditional radiographic two dimensional measurement and clinicians couldn’t have the spatial data from the identical posture without three dimensional measures, like computed tomography.
In the laboratory, however, these problems could be easily resolved by the motion tracking system, and higher resolution was proved. In clinical, motion tracking system had been incorporated into the field of computer assisted orthopaedic surgery (CAOS).
To our knowledge, most studies comparing the differences between navigation and manual method only with the traditional radiographic measures. Few studies used the optical motion tracking system as a tool for measurement and compared the results of different surgical methods.
The aim of the study is to expand the use of current navigation system to the conventional total knee arthroplasty for the function of spatial measurement by its integrating optical tracking system. First, the feasibility of the combination of the optical tracking measurement system with conventional total knee arthroplasty needs verification. Second, use the spatial results of lower extremity alignments in primary total knee arthroplasty but performed with different surgical techs and find the differences. Third, set up the database of lower extremity alignments in primary total knee arthroplasty with different surgical techs for future correlations with the clinical outcomes. Some potential risks and the surgical differences were also analyzed and addressed.
1) Gunston FH. Polycentric knee arthroplasty.. Prosthetic simulation of normal knee movement. J Bone Joint Surg (Br) 1971;53-B(2):272-277.
2) Freeman MAR and Swanson SAV. Total knee replacement of the knee. J Bone Joint Surg (Br) 1972;54-B(1):170-171.
3) Insall J, Ranawat CS, Scott WN, Walker P. Total condylar knee replacement. Preliminary report. Clin Orthop Relat Res 1976a;120:149-154.
4) Insall J, Scott WN, Ranawat CS. The total condylar knee prosthesis. A report of two hundred and twenty cases. J Bone Joint Surg (Am) 1979;61-A(2):173-180.
5) Tew M and Waugh W. Estimating the survival time of knee replacements. J Bone Joint Surg (Br) 1982;64-B(5):579-582.
6) Moreland JR. Mechanisms of failure in total knee arthroplasty. Clin Orthop Relat Res 1988;226:49-64.
7) Bartel DL, Burstein AH, Santavicca EA, Insall JN. Performance of the tibial component in total knee replacement. Conventional and revision designs. J Bone Joint Surg (Am) 1982;64-A(7):1026-1033.
8) Reilly D, Walker PS, Ben-Dov M, Ewald FC. Effects of tibial components on load transfer in the upper tibia. Clin Orthop Relat Res 1982;165:273-282.
9) Laskin RS. Session III: Total knee replacement in young patients. Clin Orthop Relat Res 2002;404:100-101.
10) Furnes O, Espehaug B, Stein AL, Stein EV, Engesaeter LB, Havelin LI. Early failures among 7,174 primary total knee replacments. A follow-up study from the Norwegian Arthroplasty Register 1994-2000. Acta Orthop Scand 2002;73(2):117-129.
11) Harrysson OL, Robertsson O, Nayfeh JF. Higher cumulative revision rate of knee arthroplasties in younger patients with osteoarthritis. Clin Orthop Relat Res 2004;421:162-168.
12) Font-Rodriguez DE, Scuderi GR, Insall JH. Survivorship of cemented total knee arthroplasty. Clin Orthop Relat Res 1997;345:79-86.
13) Gill GS and Joshi AB. Long-term results of kinematic condylar knee replacement: an analysis of 404 knees. J Bone Joint Surg (Br) 2001;83-B(3):355-358.
14) Keating ME, Meding JB, Faris PM, Ritter MA. Long-term followup of nonmodular total knee replacement. Clin Orthop Relat Res 2002;404:34-39.
15) Josson B and Astrom J. Alignment and clinical results of a semiconstrained knee prosthesis. Clin Orthop Relat Res 1988;226:124-8.
16) Jeffery RS, Morris RW, Denham RA. Coronal alignment after total knee replacement. J Bone Joint Surg (Am) 1991;73-B(5):709-14.
17) Fehring TK, Odum S, Griffin WL, Mason JB, Nadaud M. Early failures in total knee arthroplasty. Clin Orthop Relat Res. 2001; 392:315-318.
18) Sharkey PF, Hozack WJ, Rothman RH, Shastri S, Jacoby SM: Why are total knee arthroplasties failing today? Clin Ortho. 2002: 404: 7-13.
19) S. David Stulberg. How Accurate is Current TKR Instrumentation? Clin Orthop Relat Res. 2003; 416: 177–184
20) Ralf Decking, Yma Markmann, Johannes Fuchs, Wolfhart Puhl, Hanns-Peter Scharf. Leg axis after computer-navigated total knee arthroplasty: a prospective randomized trial comparing computer-navigated and manual implantation. J Arthro 2005(April); 20 (3): 273-408
21) Jenny JY, Boeri C. Navigated implantation of total knee prostheses. Z Orthop Ihre Grenzgeb 2001; 139:117.
22) Mielke RK, Clemens U, Jens JH, et al. Navigation in knee arthroplasty - preliminary clinical experience and prospective comparative study in comparison with conventional technique. Z Orthop Ihre Grenzgeb 2001;139:109.
23) Sparmann M, Wolke B, Czupalla H, et al. Positioning of total knee arthroplasty with and without navigation support. A prospective, randomised study. J Bone Joint Surg Br 2003;85:830.
24) S. David Stulberg, Peter Loan, Vineet Sarin. Computer-Assisted Navigation in Total Knee Replacement: Results of an Initial Experience in Thirty-five Patients. J Bone Joint Surg (Am) 2002;84:90-98.
25) Cappozzo, A. Gait analysis methodology. Human Movement Science 1984;3: 27–50.
26) Bell, A.L., Pedersen, D.R., Brand, R.A. A comparison of the accuracy of several hip center location prediction methods. Journal of Biomechanics, 1990; 23: 617–621.
27) Kirkwood, R.N., Culham, E.G., Costigan, P., 1999. Radiographic and non-invasive determination of the hip joint center location: effect on hip joint moments. Clinical Biomechanics (Bristol, Avon) 14, 227–235.
28) Shea, K.M., Lenhoff, M.W., Otis, J.C., Backus, S.I. Validation of a method for location of the hip joint center. Proceedings of the second annual gait and clinical movement analysis meeting. Gait and Posture 1997; 5: 157–158.
29) Leardini, A., Cappozzo, A., Catani, F., Toksvig-Larsen, S., Petitto, A., Sforza, V., Cassanelli, G., Giannini, S. Validation of a functional method for the estimation of hip joint centre location. Journal of Biomechanics, 1999; 32: 99–103.
30) Piazza, S.J., Okita, N., Cavanagh, P.R., 2001. Accuracy of the functional method of hip joint center location: effects of limited motion and varied implementation. Journal of Biomechanics 34, 967–973.
31) Krackow, K.A., Bayers-Thering, M., Phillips, M.J., Mihalko, W.M. A new technique for determining proper mechanical axis alignment during total knee arthroplasty: progress toward computer-assisted TKA. Orthopedics 1999; 22, 698–702.
32) Nofrini, L., Slomczykowski, M., Iacono, F., Marcacci, M. Evaluation of accuracy in ankle center location for tibial mechanical axis identification. J of Invest Surg , 2004;17: 23–29.
33) Y.-H. Kim, J.-S. Kim, S.-H. Yoon. Alignment and orientation of the components in total knee replacement with and without navigation support A Prospective, randomized study. J Bone Joint Surg (Br) 2007 APRIL; 89-B, 4, 471-762007
34) Mihalko WM, Boyle J, Clark LD., Krackow KA. The variability of intramedullary alignment of the femoral component during total knee arthroplasty. J Arthrop 2005 Jan; 1: 25-28.
35) H. Bäthis, L. Perlick, M. Tingart, C. Lüring, D. Zurakowski, J. Grifka. Alignment in total knee arthroplasty A comparison of computer-assisted surgery with the conventional technique. J Bone Jour Surg (Br) 2004 Jul; 86-B, 5, 682-87
36) Mihalko WM, et al. Effect of one and two pin reference anchoring system on marker stability during total knee arthroplasty computer navigation. Comput Aided Surg. 2006 Mar;11 (2)
37) Kalairajah Y, et al. Blood loss after total knee athroplasty: effects of computer-assisted surgery. J Bone Joint Surg (Br) 2005; 87-B, 11, 1480-1482